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Abstract—Storage is one of the important components in
datacenters. As the data volume rises and the service scale grows,
some workloads like database demand increasing amount of
storage. While a single server can only host a limited number
of disks, distributed file systems (e.g., Hadoop Distributed File
System referred to as HDFS) enable accessing disks mounted
on the other servers in the cluster, satisfying the storage re-
quirements. On the other side, NVMe-over-Fabric protocols (e.g.,
NVMe-over-TCP) have been released as a solution on the device
level to provide access to remote NVMe disks. Therefore, for
those applications developed on top of HDFS, there are at least
two choices to make use of the storage resources distributed
in datacenters. A concern is whether NVMe-over-TCP will
hurt the performance. The evaluation in this paper reveals
that the performance degradation NVMe-over-TCP caused on
HDFS-based workloads is limited, suggesting NVMe-over-TCP
a performant and economical solution in datacenter design to
support workloads that needs a lot of storage (such as database
applications).

Index Terms—storage, datacenter, NVMe-over-TCP, Hadoop
Distributed File System.

I. INTRODUCTION

Datacenters are rapidly growing and expanding, and the
demand placed on these datacenters is growing at unprece-
dented rates. One of the essential components of a datacenter
is storage. There needs to be sufficient storage that can support
the massive scale at which data is growing and applications are
running. However, the amount of disks that a single machine
could host is limited; so servers in the cluster are usually
configured to share the disks between each other as remote
storage. In addition to the capacity requirement, the latency
of accessing the storage (local or remote) should ideally not
be the cause of a bottleneck in applications and the backing
storage should allow for high throughput. There have been
a few efforts on increasing the capacity and accelerating
the access of the storage(e.g., caching [1], partitioning [2],
scheduling [3], virtualization [4], failure prediction [5] and so
on).

One of the emerging trends is the adoption of Non-Volatile-
Memory Express (NVMe) disks for storage disaggregation.
NVMe has become one of the industry standards for Solid-
State Drives (SSDs), and has shown excellent performance on
real-world workloads such as database applications [6]. By

2020, more than 90% of the SSD disks used in hyperscale
datacenters are NVMe disks [7]. The NVMe and the derived
NVMe-over-Fabric (NVMeoF) specifications [8] provide a
low latency and scalable interface for software to commu-
nicate with non-volatile memory across multiple transports
(e.g., PCI-Express, RDMA, TCP). In NVMe architecture [9],
there are paired submission queues for NVMe commands,
and completion queues for NVMe device acknowledgements
in between the user applications and the NVMe controller.
Similarly, the NVMe device management is accomplished by
the submission-completion queue structure as well. In the same
NVMe subsystem, there could exist more than one NVMe
controller, as well as more than one NVMe namespace, and
a namespace could span multiple NVMe controllers. Each
NVMe host has the access to one or more NVMe controllers.
NVMeoF connects a host server to storage that uses the NVMe
protocol over a network fabric (e.g., Ethernet, Infiniband etc.),
so that servers in a cluster could host and share a great amount
of storage. Prior to the release of NVMeoF, solutions have
been practiced on the file system level (e.g., Hadoop Dis-
tributed File System, HDFS [10]), however, a past study [11]
shows that with NVMe-over-RDMA, the throughput of HDFS
could be improved a lot (2.55×). This makes NVMeoF
beneficial especially for storage disaggregation. Specifically,
this paper focuses on NVMe-over-TCP, a protocol that builds
upon NVMeoF using an underlying TCP fabric. Compared to
other NVMeoF protocols (e.g., NVMe-over-RDMA, NVMe-
over-InfiniBand), NVMe-over-TCP has the best adaptability,
that where there are commercial network connections and TCP
works, we can deploy NVMe-over-TCP.

There have been studies on other NVMeoF schemes (§ II),
while to our knowledge, NVMe-over-TCP has not been well
studied, despite of the low barrier to set up and deploy
NVMe-over-TCP (as described above, unlike other NVMeoF
schemes, NVMe-over-TCP needs no additional network facil-
ities). Therefore, the following questions are worth exploring,
which this paper tries to answer:

1) Whether with the minimum hardware requirement (i.e.,
no addition to the legacy Ethernet network fabric),
NVMe-over-TCP can make accessing remote NVMe
disks as fast as accessing local NVMe disks?



2) Whether the disks mounted via NVMe-over-TCP are
able to serve as many concurrent read/write operations
(in another word, operation throughput) as the local
NVMe disks?

3) If there is performance degradation caused by NVMe-
over-TCP, whether it would be still in a tolerable range
for datacenter workloads? Or NVMe-over-TCP could
avoid degrading the performance but at what cost?

In this paper we run several microbenchmarks as well as
a database application on a NVMe-over-TCP setup in order
to evaluate its impact on performance (latency as well as
throughput). More specifically, we look at the performance
of NVMe-over-TCP with the popular distributed file system
framework, HDFS. If performance overheads with NVMe-
over-TCP is low, it would allow for massive increases in the
storage capacity and flexibility of HDFS.

The contributions of the paper are as follows:

1) We evaluate multiple options of using NVMe disks
including deploying with NVMe-over-TCP. Specifically,
the experiments compare 1) local NVMe disk; 2) re-
mote NVMe-over-TCP disk; 3) remote NVMe disk with
HDFS;

2) We perform workload characterization on both mi-
crobenchmarks and a database application. The eval-
uation result suggests NVMe-over-TCP has negligible
performance overhead so datacenter operators could de-
ploy more NVMe disks via NVMe-over-TCP protocol,
achieving the benefits of large storage capacity without
degrading performance.

II. RELATED WORK

Accessing remote storage does come with high overheads.
However, it also allows for the size of storage to scale rapidly
especially in response to the growing demand. Therefore,
researchers have been evaluating the benefits and drawbacks of
various NVMeoF systems. With the advanced network facility
support (e.g., InfiniBand, converged Ethernet), it has been
shown that NVMe-over-RDMA has negligible performance
degradation in the storage disaggregation setting, and is much
better than iSCSI [12], [13]. Under ARM architecture, NVMe-
over-RDMA is even able to achieve better performance than
direct attached storage if both the hardware and software are
optimized [14]. Nevertheless, most of the prior studies are
limited to NVMeoF with specialized hardware (e.g., Infini-
band, RDMA), where it is not surprising for those NVMeoF
protocols to obtain comparable performance as local NVMe
disks due to the advantages of the fabric support. Nevertheless,
the latest released NVMe-over-TCP protocol has not been
systematically studied yet.

III. METHODOLOGY

This section covers how we setup the system and the
experiments we conduct to evaluate the system performance
with the microbenchmarks as well as the database application.

A. System Configurations

The specifications of the experimental platform are listed
in Table I. The servers we used in the experiments are
equipped with high-end 32-core ARM processors, and 128GB
DDR4 DRAMs. There is one 800GB NVMe disk attached to
each server via Generation 3 PCI-Express ports. Servers are
connected in a local network (only one switch in between) and
the network cards have sufficient bandwidth. The kernel mod-
ules that provide NVMe-over-TCP stack, as well as kernel,
software versions are all listed in Figure 1.

TABLE I: System Specifications

Processors 32× ARMv8 64-bit CPU cores
Memory 128GB DDR4-2666

Disk PCIe Gen3 ×4 800GB SSD
NIC PCIe 2.1 2.5GT/s GbE NIC

kernel modules nvmet, nvmet tcp
kernel version Linux 5.4.0-80-generic

OS version Ubuntu 20.04.3 LTS
Hadoop version hadoop-3.3.1
RocksDB version 6.23.2

With the aforementioned hardware and software, we con-
figure the system in three ways as shown in Figure 2 to make
comparison. For the first setting, local, we let a single server
in charge of the entire system: the NVMe disk is attached
to the server locally, and the Hadoop Distributed File System
(HDFS [10]) is configured to only use the local disk to store
data. Then we introduce a remote disk using the NVMe-over-
TCP protocol, and let the HDFS merely use the remote disk.
This turns to be the second setting, namely, remote NVMe-
over-TCP. Eventually, we move the datanode 1 of HDFS to
a second server with a NVMe disk attached, so the tasks
undertaken by the HDFS datanode can access the data locally
on the second server, while providing the results to the master
server (where the namenode 2 and the database application
run). We name this setting as remote NVMe w/ HDFS. All
the three system settings enumerated above configure HDFS
with one datanode and the replication factor is one. A modern
database application, RocksDB [16], runs on top of the HDFS
setup.

B. Experiments With Micro-benchmarks

HDFS is designed to accommodate large quantities of
data and be tolerant to hardware failures. In order to stress
the file system, a HDFS distribution comes with built-in
microbenchmarks. These benchmarks utilize the MapReduce
framework [17]. Table II lists the three MapReduce mi-
crobenchmarks used in our experiments. The wordcount is the
very typical example for MapReduce processing: the content

1A DataNode stores data in the HadoopFileSystem [15].
2The NameNode is the centerpiece of an HDFS file system. It keeps the

directory tree of all files in the file system, and tracks where across the cluster
the file data is kept. It does not store the data of these files itself [15].
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Fig. 2: The three configurations that are experimented in this paper

TABLE II: The built-in MapReduce microbenchmarks from
HDFS installation that we use in the experiments.

microbenchmark description
randomwriter write randomly generated bytes into a list of files

wordcount break file content into tokens and aggregates the
occurrence of each token

sort read values from a file then write them into a file
in sorted order

of input files are cut by the word boundary and the workers
create pairs of value 1 and token (mapping occurrences by
word), then the reducers aggregate values according to the
tokens. The randomwriter benchmark generates content byte
by byte and dumps to a list of files. The sort benchmark
exploits the shuffling and sort phase in the reducing process
of MapReduce tasks to sort the values from the input file.

We measure the total execution time (i.e., latency) of
these microbenchmarks in the three system settings (§ III-A,
Figure 2). It is important to check whether the remote NVMe
disks provide the bandwidth close to the local disk under
varying levels of access intensity. Therefore, we increase the
number of wordcount microbenchmark instances launched at
the same time (similar to the approach that SPEC CPU2017
rate suite takes [18]) from 1 to 40 (the server memory capacity
limits at most 40 tasks), and measure the overall duration (from

the beginning to the last task finishes). All instances read the
same input file but write to different output files.

Each measurement is repeated 40 times in order to reduce
the randomness in the results. We discard 2 minimal values
and 2 maximum values and use the average of the left 36
values.

In order to gain a deeper understanding, we further pro-
file the execution of the wordcount micro-benchmark, and
compare the function call stacks of two configurations: local
NVMe and remote NVMe-over-TCP. We use the async-
profiler [19] designed for Java workload to sample the stack
every 10 milliseconds during the execution. The profiling
covers all Java processes on the server (the third configuration
remote NVMe w/ HDFS is skipped due to the difficulty of
synchronizing profiler across machines), when the server is
only loaded by the wordcount benchmark. With over twenty
thousand stack records and more than sixty four thousand
samples, we attribute them into five major categories and a
few more sub-categories.

C. Experiments With Database Application

RocksDB [20] is a persistent key-value store developed
and contributed to the open-source community by Facebook.
Considering the advances in the field of storage, RocksDB
is explicitly optimized for fast storage like flash-based disks,



fully exploiting the potential of high read/write rates provided
by flash in order to maximize the performance. There is also
build-in support for HDFS in RocksDB. We run two sets
of RocksDB benchmarks in the same three configurations
outlined in Section III-A. This will show how the performance
of NVMe-over-TCP extends to a full application as compared
to within microbenchmarks.

In addition, RocksDB provides its adaption of the db bench
benchmarks from LevelDB [21], so we test the db bench
performance on our RocksDB setup as well.

IV. EVALUATION

We present and analysis the experimental results in this
section.

A. Micro-benchmarks

1) Latency and Bandwidth Tests:

Fig. 3: Overhead of accessing remote storage with HDFS
MapReduce microbenchmarks. The execution time of the two
remote disk configurations are normalized to time of the local
configuration for each benchmark. The absolute time of the
local configuration are reported on the left of the grey solid bar
in seconds. The geometric mean of the slowdowns over local
configuration is shown on the right (GEOMEAN). Remote
NVMe w/ HDFS has 10% overhead whereas remote NVMe-
Over-TCP only has 1% overhead.

Figure 3 presnets the 9 sets of performance results we
measured on the micro-benchamrks. We report the variation
observed in the 40 experiments as the error bars in Figure 3.

For each microbenchmark, we use the local setting time
as the baseline (the absolute values in seconds are reported
beside the grey solid bar), and normalize the time in the remote
settings to the baseline. We notice using a remote NVMe-over-
TCP disk has almost the same performance as using a local
disk across the microbenchmarks, and on average (geometrical
mean) there is only 1% slowdown with NVMe-over-TCP.
The second remote setting, remote NVMe w/ HDFS, also
achieves comparable latency on randomwriter and worcount,
but has notable time increase (more than 30%) on the sort
microbenchmark. Overall, remote NVMe w/ HDFS is about
10% slower than local NVMe.

For the bandwidth test experiments, Figure 4 reflects the
trend, where we can learn that the two remote NVMe disk con-
figurations are affected similarly as the local disk configuration
when the contention is increased: increasing the number of

Fig. 4: Effect of increasing workload on the wordcount mi-
crobenchmark.

wordcount task instances only slightly rises the execution time
initially, and by 32 (running out of CPU cores) the execution
time has been tripled.

The takeaway from Figure 3 and Figure 4 is that there exists
no adverse effects evident from using remote NVMe disks.

2) Function Stack Profiling:
These categorization results on function-call stack profiling

data are visualized in Figure 5. The two charts looks almost
identical as expected, and we notice that network I/O (labeled
as NIOTasks in Figure 5) only contributes around 2.5% of the
overall samples for both configurations. The most of time are
spent on Java-related libraries and data structure operations.
These stack sample breakdown results could explain the nearly
identical performance results shown in Figure 4. Since the
NIOTasks are not the bottleneck for the entire system, the
overall performance would not be affected too much on
different configurations. The detailed categorization result is
reported in Table III.

TABLE III: Function call stack categorization of NVMe-over-
TCP and each sample represents 10ms interval.

Call stack category local remote NVMe-over-TCP
#samples percentage #samples percentage

Java 30387 46.44% 29496 45.55%
MapReduce 9772 14.93% 9913 15.31%

FileIO 4906 7.50% 5081 7.85%
NIOTask 1662 2.54% 1602 2.47%

Utilities/string 5737 8.77% 5876 9.07%
Utilities/thread 2587 3.95% 2482 3.83%
Utilities/copy 1939 2.96% 1847 2.85%
Utilities/time 85 0.13% 87 0.13%

Utilities/datastruct/hashMap 5788 8.85% 5810 8.97%
Utilities/datastruct/hashSet 36 0.06% 47 0.07%

Utilities/datastruct/hashTable 22 0.03% 19 0.03%
Utilities/datastruct/queue 1180 1.80% 1132 1.75%
Utilities/datastruct/array 301 0.46% 317 0.49%

Uncategoried 1035 1.58% 1043 1.61%
Sum 65437 100% 64752 100%

B. Database Application

In Figure 6, we show the throughput of various RocksDB
operations achieved in the three different settings. The re-
sults are measured by the benchmark script that comes with
RocksDB and the execution as well as parameters follow
the instructions on the RocksDB github wiki page [22]. We
can see remote NVMe-over-TCP is able to obtain about the
same throughput on all tested RocksDB operations, except
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Fig. 5: Function call stack categorization from the wordcount microbenchmark.

Fig. 6: RocksDB benchmark throughput. For each benchmark,
the throughput of the two remote settings are normalized to
the throughput of the local setting, which is labeled on the left
of the grey solid bar.

fwdrange writing, which randomly iterates over a range of
keys with some background writings happening. Overall,
remote NVMe-over-TCP gets 98% throughput of local on
average (geometrical mean). The throughput of local NVMe
and remote NVMe w/ HDFS remains mostly indistinguishable
on fwdrange writing, and other benchmarks. There are several
other metrics (such as percentile latency, bandwidth) measured
by the benchmarks, and we summarize them in Table IV.

Fig. 7: The db bench [21] benchmarks throughput (on
RocksDB). For each benchmark, the throughput of the two
remote settings are normalized to the throughput of the local
setting, which is labeled on the left of the grey solid bar.

Figure 7 compares the throughput achieved under the three
NVMe settings. Remote NVMe-over-TCP has small drops
(within 9%) on the operation throughput of three benchmarks
(i.e., readseq, readrandom, and readrandomwriterandom), but
has very close performance on the other ones. Remote NVMe
w/ HDFS has very limited (less than 10%) performance
degradation on most benchmarks except that fillseq is almost
the same as the performance of local NVMe.

The evaluation on the database application, RocksDB,

further confirms our finding that the overhead with NVMe-
over-TCP is not likely to be the performance bottleneck
of datacenter workloads. Data center workloads can safely
use NVMe-over-TCP and maintain performance while having
access to large amounts of storage.

V. CONCLUSION

The NVMe-over-TCP protocol allows for a massive increase
in the amount of storage accessible in datacenters. Further,
it allows for the decoupling of compute and storage nodes
(i.e., disaggregation), which is the current trend in datacenter
resource management because of the much better hardware
utilization of all available resources. Largely, the benefits that
come from using the NVMe-over-TCP protocol outweigh the
overheads. Our experiments with MapReduce kernel bench-
marks as well as the RocksDB application illustrate that the
performance overheads of accessing remote storage using the
NVMe-over-TCP protocol is largely negligible. Performance
degradation is minimal ranging from 1− 2% on microbench-
marks and 2− 9% on the RocksDB full database application.
To accommodate the growing demand for storage, we show
the NVMe-over-TCP protocol to be a viable option that
minimizes the overhead of accessing storage over the network
and provides a solution that has a low barrier to deployment.
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