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Driven by the increasing demands of machine learning, heterogeneous systems combining CPUs and GPUs have emerged as the
dominant architecture for parallel computing in recent years. To optimize memory management and data transfer between CPUs and
GPUs, Nvidia GPUs have introduced unified virtual memory (UVM) and pinned memory (PM) over the last decade. UVM can avoid
explicit memory copies and potentially overlap GPU kernel computations with CPU-GPU data transfer. PM ensures that data with high
locality remains in the main memory, preventing it from being paged out. In addition to these two techniques, asynchronous memory
copy (Async Memcpy) was introduced recently in Nvidia GPUs to improve the CPU-GPU pipeline further. By utilizing Async Memcpy,
the data transfer from GPU global memory to shared memory can be overlapped with GPU computations, adding an additional stage
to the CPU-GPU data transfer pipeline. A thorough performance analysis of how Async Memcpy affects the current UVM and PM

CPU-GPU data transfer scheme is desired.
In this paper, we provide performance implications of the combined effect of UVM, PM, and Async Memcpy, exploring which

applications benefit from which combination of these features. We implement all these features on a suite of 25 workloads, including
microbenchmarks and realworld applications. We observe an average performance gain of 24% when utilizing UVM and a 34% gain
when employing PM on realworld applications, compared to not applying any data transfer optimization techniques. The performance
benefits of Async Memcpy vary across different workloads. For workloads featuring extensive shared memory usage and high compute
density (e.g., kmeans and lud), Async Memcpy delivers around a 20% performance improvement over using UVM or PM alone. In

∗Extension of Conference Paper [26]. We make the following major extensions: (1) In addition to unified virtual memory, we also evaluate how
asynchronous memory copy affects the CPU-GPU pipeline when using pinned memory; (2) We include multiple machine system configurations and
analyze their effect on the CPU-GPU heterogeneous system performance; (3) In addition to Nvidia A100, we include Nvidia H100 in our experiments to
evaluate whether our findings are consistent with different GPU generations; (4) We include more machine learning (including training) workloads in
our benchmark suite; (5) We present an in-depth quantitative analysis of how asynchronous memory copy impacts performance; (6) We prototype and
evaluate the inter-job pipeline proposed in the conference version.
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other workloads like knn, we note a 20% performance degradation when using Async Memcpy. Furthermore, we conduct an in-depth
investigation of the GPU kernel using performance counters to uncover the root causes of performance differences among various data
transfer models. We also perform sensitivity analyses to examine how the number of blocks and threads, as well as the L1-cache/shared
memory partitioning, impact performance. We explore future research directions aimed at enhancing the data transfer pipeline by
overlapping memory allocation with data transfer and computation across GPU kernels.

CCS Concepts: • Computer systems organization→ Parallel architectures; Heterogeneous (hybrid) systems.
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1 INTRODUCTION

GPUs have become a key component in boosting the throughput of machine learning (ML) and big data workloads due
to the massive parallelism they offer. With the exponential growth in data sizes, significant efforts over the past decade
have focused on optimizing GPU architectures to enhance computational capabilities. For example, Nvidia introduced
tensor cores in the Volta [39] architecture to exploit parallelism in ML tasks, and later incorporated fine-grained
structured sparsity in the Ampere [36] architecture to enable efficient sparse matrix multiplication. Despite these
advancements, GPUs still depend on CPUs to act as central controllers for workload distribution and data transfer. Thus,
optimizing both CPUs and GPUs together as a unified heterogeneous system is essential for maximizing performance.

Recent studies have focused on reducing performance losses caused by data transfers between CPU and GPU systems.
In memory-bound applications, data transfer times between the CPU and GPU can significantly surpass the time
required for GPU kernel execution, by as much as 50 times [16]. With the advent of large language models, which have
scaled from millions to billions of parameters in recent years [15, 52, 53], while GPU memory capacity has only grown
incrementally, developing efficient CPU-GPU data transfer solutions has become increasingly critical. One approach to
enhancing the performance of heterogeneous systems is to overlap CPU-GPU data transfer with GPU kernel processing,
which has already been applied in different application domains, including graph processing [47], machine learning [44],
and database systems [28]. Nvidia GPUs have introduced several features to mitigate data transfer overhead, including
unified virtual memory (UVM), pinned memory (PM), and asynchronous memory copy (Async Memcpy) [36, 38]. In
this work, we emphasize that the effectiveness of these optimizations can vary depending on the characteristics of the
application, such as the computation density, which may not be immediately evident to users. We provide an in-depth
analysis of the performance implications of PM, UVM, and Async Memcpy in modern Nvidia GPUs, exploring their
impact across a wide range of workloads.

PM ensures that the memory allocated on the (CPU) host is mapped into the GPU address space, preventing it from
being swapped out of main memory to storage devices [14, 30, 41]. UVM [31] creates a shared memory address space
between CPU hosts and GPU devices, allowing both to access the same virtual memory. With the support of PM and
UVM, GPUs can initiate data transfer precisely when the data is required for computation, rather than transferring all
data before launching the GPU kernel. In addition to PM and UVM, Nvidia recently introduced an architectural feature
in the Ampere architecture (CUDA 11) called asynchronous memory copy (Async Memcpy) [36]. This feature enables
Manuscript submitted to ACM
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(b) CPU-GPU system data transfer pipeline.
Fig. 1. With PM/UVM, the pipeline contains𝑈1 and𝑈2 stages. Adding Async Memcpy atop of PM/UVM, stage𝑈2 can be pipelined
into 𝐴2.1 and 𝐴2.2.

data to be loaded directly from global memory into the shared memory of streaming multiprocessors (SMs). As its name
implies, Async Memcpy operates in the background, allowing the SM to execute computation tasks concurrently.

While there is a wealth of prior studies of PM [14, 30, 41], UVM [5, 6, 22, 59], and Async Memcpy [51] separately, the
performance implications of combined effects of these mechanisms for a given workload remain unclear. Programmers
can use PM to improve the CPU-GPU data transfer for frequently used data [41]. UVM has been explored deeply with
studies focusing on various aspects including analyzing prefetchers and over-subscriptions, developing efficient page
fault handlers, and reducing data movement [4, 6]. While many prior works have examined the sparse units and power
consumption of the Ampere architecture [8, 56], few of them discussed Async Memcpy. Moreover, no previous work
has investigated the intersection between PM, UVM, and Async Memcpy. It is important to analyze the performance of
these three hardware features together, as all architectural enhancements come with their overheads.

The overall system performance cannot benefit from the three architectural enhancements if the overhead is not well
handled. In PM, additional system calls are required to guarantee pinned pages physically reside in the main memory of
the system [14, 30]. In UVM, page faults can happen on the GPU side when the accessed data is not in the page table,
which blocks the data transfer and downgrades the overall system performance [5, 6]. Async Memcpy complicates the
data transfer pipeline because additional GPU resources are needed to coordinate the transfer from global memory to
shared memory along with SM computation [51].

Despite the performance overhead, programmers also need to make a choice when writing their CUDA programs,
i.e., whether to write a PM, UVM, or Async Memcpy version. In addition, there are no automatic tools such as compilers
available for converting programs to PM, UVM, or Async Memcpy versions. Software developers need to hand-tune
the CUDA programs for better performance, making a design guideline for these three architectural features more
desirable. Answers to questions such as the following can help programmers in tuning their applications. (a) What kind
of workloads benefit from using Async Memcpy? In other words, which workloads are bottlenecked by the GPU global
memory to shared memory data transfer stage? Similarly, which workloads benefit from using PM or UVM, i.e., the
bottlenecked by the CPU DRAM to GPU global memory transfer? (b) What are the performance implications for the
choice between PM, UVM, and Async Memcpy? Are these implications workload-agnostic? How should programmers
make these choices? (c) Would the overall performance improve further if we use both PM/UVM and Async Memcpy1?
Can programmers make the decision with limited profiling or intensive profiling?

To answer these questions, in this paper, we make in-depth analysis of how PM, UVM and Async Memcpy affect
the performance of workloads on CPU-GPU heterogeneous systems. To the best of our knowledge, we are the first to
consider the three architectural features together. The following are the key contributions of our work.
1Async Memcpy can be used together with either PM or UVM. However, PM and UVM cannot be used together.
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• We explore the performance implications of CUDA programming choices for data transfer (PM, UVM, and/or
Async Memcpy). We break down the execution time into GPU kernel time, data transfer time, and data allocation
time on 25 workloads and use performance counters to reveal the root cause of the performance differences. We
make sensitivity studies on the number of blocks and threads, and L1-Cache/shared memory partition, to further
understand the impact of PM, UVM, and Async Memcpy.

• Our analysis on PM, UVM, and Async Memcpy can help CUDA programmers understand these three hardware
features better and develop more efficient GPU codes. A good usage of these features can help programs achieve
up to 6× speedups, while an inappropriate usage may lead to up to 3× slow downs on certain workloads.

• We create and make available a benchmark suite for the three architectural features and different combinations,
including 7 microbenchmarks and 18 realworld applications, which cover multiple domains. We implement
the PM, UVM, and Async Memcpy versions of each workload that were not available already. We believe that
releasing this benchmark suite publicly will enable further research in this domain2.

2 BACKGROUND AND RELATEDWORK

Fig. 1 summarizes state-of-the-art CPU-GPU heterogeneous system memory architectures with PM, UVM, and
Async Memcpy. We describe details about PM and UVM in Section 2.1, Async Memcpy in Section 2.2, and performance
implications of combing these architectural features in Section 2.3. We also discuss prior performance characterization
studies on PM, UVM, and Async Memcpy in this section.

2.1 Pinned Memory and Unified Virtual Memory

We describe details about PM in Section 2.1.1, UVM in Section 2.1.2, and how these two architectural features affect
CPU-GPU data transfer pipeline in Section 2.1.3.

2.1.1 Pinned Memory. PM is allocated in a dedicated memory space that physically resides in the main memory of the
system. Pinned memory is allocated using cudaMallocHost interface, as illustrated in Fig. 2a.

Nvidia Pinned Memory (PM) ensures that the “pinned” memory regions allocated on the (CPU) host are mapped
into the GPU address space, preventing it from being swapped out of the main memory [14, 30, 41]. This is important
for achieving high-performance data transfer between CPUs and GPUs, as pinned memory eliminates the overhead
associated with paging memory in and out of the virtual memory space of the system. However, “pinned” memory can
introduce additional overhead, such as size constraints and allocation costs, which may reduce performance [3, 14].
Considering the trade-offs of using PM, state-of-the-art research falls into two major directions:

(1) Using PM Efficiently. Prior works [9, 20, 54] applied pinned memory to store frequently used data and pipelines
the CPU to GPU data transfer with GPU processing, which helps improve the performance of scientific computing,
network processing, and machine learning systems.

(2) Reducing the PM Capacity Requirement. Pinned memory is non-pageable and hence it cannot be allocated
by the CPU to other processes. Prior work [49] showed the feasibility of compressing data using CPU cores, which
helps reduce pinned memory consumption.

2Codes are available at https://github.com/UT-LCA/UVMAsyncBench
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DataType *h_a, *d_a;
h_a = malloc(size);
cudaMalloc(&d_a, size);
cudaMemcpy(d_a, host_a, size, cudaMemcpyHostToDevice);
cudaKernel<<<...>>>(d_a);
cudaMemcpy(host_a, host_a, size, cudaMemcpyDeviceToHost);

DataType *h_a, *d_a;
cudaMallocHost(&h_a, size);
cudaMalloc(&d_a, size);
cudaMemcpyAsync(d_a, host_a, size, cudaMemcpyHostToDevice);
cudaKernel<<<...>>>(d_a);
cudaMemcpyAsync(host_a, host_a, size, cudaMemcpyDeviceToHost);

Without PM/UVM                                               

With PM

DataType *uvm_a; 
cudaMallocManaged(&uvm_a, size); 
cudaKernel<<<...>>>(uvm_a); 

With UVM 

(a) Without/with PM/UVM (Pseudo-code).

__shared__ DataType data[size];
for (; tile < end; tile++) {

memcpy(data[0:size], input[tile]);
compute on data[0:size];

}

__shared__ DataType data[size * 2];
for (; tile < end; tile++) {

f = (tile + 1) % 2;
c = tile % 2;
memcpy_async(data[f*size:(f+1)*size], input[tile]);
compute on data[c*size:(c+1)*size];

}

Without Async Memcpy                       

With Async Memcpy

(b) Without/with Async Memcpy (Pseudo-code).
Fig. 2. CUDA programming Pseudo-code of PM, UVM, and Async Memcpy.

2.1.2 Unified Virtual Memory. UVM is a powerful technology introduced with the Kepler architecture [31], which
provides a unified memory space and automates memory management and data migration between the physical memory
modules of the CPU host and GPU device.

UVM is designed to be transparent to applications, making CUDAprogramming simpler andmore intuitive (see Fig. 2a).
By offering a unified virtual memory space, UVM enables applications to effectively leverage the combined memory
resources of multiple GPUs for data-intensive tasks, such as machine learning and high-performance computing [4].
However, UVM introduces performance overhead because GPUs must maintain a copy of the CPU page table for address
translation and synchronize GPU page faults with the CPU. These trade-offs have attracted significant attention in the
research community, leading to two main areas of focus:

(1) Architecture Optimizations that focus on reducing the additional performance overhead by introducing
hardware enhancement. For example, prior works have improved UVM system performance by batch processing
page faults [22], improving GPU cache utilization [23], and dynamically managing variable-sized pages [25]. All these
architectural improvements can be used in next-generation GPU designs.

(2) Characterization and Analysis that reveal bottlenecks in current systems, guiding programmers to develop
more hardware-friendly applications and libraries. For example, Zheng et al. [58] compared UVM and traditional
memory management methodology and found the possibility of using UVM with minimal overhead. Allen et al. [4–6]
dived into the software and hardware-based root causes of the internal behaviors of page fault generation and servicing.
Shao et al. [48] revealed the reasons behind the diverse sensitivities to oversubscription among different workloads.

2.1.3 How PM and UVM Affect Data Transfer. In addition to improving data locality and programmability, PM and
UVM also affect the CPU-GPU data transfer pipeline. As shown in Fig. 1, when using PM or UVM, the CPU DRAM to
GPU global memory data transfer (𝑈1) can run in parallel with global memory to shared memory data transfer and
SM execution (𝑈2)3. Such CPU-GPU data transfer pipelines are also compatible with other intra-GPU data transfer
pipelines, e.g., Async Memcpy, with more details in the following sections.

3An enhanced UVM version supports prefetch data from global memory to L2 cache [5, 22], reducing the global memory to shared memory time.
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2.2 Asynchronous Memcpy

Pipelining computation and data transfer can improve the CPU-GPU heterogeneous system performance. This
technique has already been used in the PM and UVM systems, by enabling GPU-driven fine-granularity transfer while
freeing CPU cycles for other jobs, instead of blocking the CPU to transfer the entire chunk of allocated memory.

In addition to CPU DRAM-GPU global memory data transfer, the GPU global memory to shared memory data
transfer latency can also be pipelined and optimized, as long as the GPU hardware architecture supports it. Fortunately,
starting with Ampere architecture (with CUDA 11), Nvidia GPUs support this asynchronous copying (Async Memcpy) of
data from global memory to shared memory. In Fig. 1, for Async Memcpy4, copying data from global memory to shared
memory is marked as 𝐴2.1, and fetching data from shared memory during processing is marked 𝐴2.2. Async Memcpy

allows the programmer to initiate a transfer of data from global to shared memory, without blocking GPU thread
execution (code snippets shown in Fig. 2b). Additional primitives are provided to enable waiting for the completion of
asynchronous memory operations.

Though many works studied the Ampere architecture before, the majority of the works focused on the sparse
units [12, 13] and power efficiency [56], but not Async Memcpy. A few prior studies on Async Memcpy can also be
divided into two categories:

(1) Software Optimizations that focus on enhancing compilers and system libraries to make full use of the new
Async Memcpy hardware feature. For example, Async Memcpy has been used in deep learning compilers recently to
optimize the pipeline of tensor programs [21, 55].

(2) Characterization and Analysis that study the performance of Async Memcpy and compare it against its
predecessor architecture. For example, Svedin et al. [51] compared A100 performance with four previous generations of
GPUs, and in their experiments on A100, they observed up to 1.25× performance improvement from Async Memcpy.

2.3 PM/UVM vs Async Memcpy

As shown in Fig. 1, Async Memcpy can be used in conjunction with either PM or UVM. These architectural features
work together to establish a three-stage data transfer pipeline in CPU-GPU heterogeneous systems: (1) from CPU
DRAM to GPU global memory (𝑈1), (2) from GPU global memory to shared memory (𝐴2.1), and (3) from shared memory
to each thread (𝐴2.2).

All pipelines come with overhead. The overall system throughput can only be improved with an acceptable number
of pipeline bubbles. Whether Async Memcpy together with PM or UVM can boost GPU system performance more is
worth exploring, considering the sophisticated 3-stage data transfer pipeline.

3 EXPERIMENTAL METHODOLOGY

In this section, we first provide details of the experimental hardware and software setup. We then give an overview
of the 25 workloads in the benchmark suite we created. Lastly, we discuss how to determine the configuration of each
workload since the performance can be affected when using different input sizes and machine system configurations.

4In this paper Async Memcpy only refers to asynchronous copying of data from global memory to shared memory.
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Table 1. Machine configurations of the four systems used in the study.
Machine-A Machine-B Machine-C Machine-D

CPU
20× Intel Xeon Gold 6138@ 2.0GHz 64× AMD EPYC 7763@ 2.45GHz 52× Intel Xeon Platinum 8470@ 2.0GHz 48× AMD EPYC 9454@ 2.75GHz
32KB L1-dcache, 32KB L1-icache 32KB L1-dcache, 32KB L1-icache 48KB L1-dcache, 32KB L1-icache 32 KB L1-dcache, 32KB L1-icache

1MB L2-cache, 1.375MB L3-cache/core 512KB L2-cache, 4MB L3-cache/core 2MB L2-cache, 1.875MB L3-cache/core 1MB L2-cache, 4MB L3-cache/core

DRAM 12× 16GB DDR4@ 2666 MT/s 16× 16GB DDR4@ 3200 MT/s 16× 64GB DDR5@ 4400 MT/s 24× 16GB DDR5@ 4800 MT/s

PCIe
System PCIe Gen 3.0 System PCIe Gen 4.0 System PCIe Gen 5.0 System PCIe Gen 5.0
PCIe to GPU Gen 3.0 PCIe to GPU Gen 4.0 PCIe to GPU Gen 4.0 PCIe to GPU Gen 5.0

GPU
Nvidia Tesla A100@ 1410MHz Nvidia Tesla A100@ 1410MHz Nvidia Tesla A100@ 1410MHz Nvidia Tesla H100@ 1620MHz
80GB HBM2e@ 1512 MHz 40GB HBM2@ 1215 MHz 80GB HBM2e@ 1593 MHz 80GB HBM2e@ 1593 MHz

Software
Ubuntu 22.04, Linux kernel 5.15 Rocky 8.6, Linux kernel 4.18 Ubuntu 22.04, Linux kernel 5.15 Rocky 8.6, Linux kernel 4.18

GCC 11, CUDA 12 GCC 11, CUDA 12 GCC 11, CUDA 12 GCC 11, CUDA 12

3.1 Experimental Setup

3.1.1 Machine Configurations. We conduct our characterization study on multiple Nvidia A100 servers with varied
machine system configurations (Machine-A, Machine-B, and Machine-C), and on an Nvidia H100 server (Machine-D).
The hardware and software configurations for all four machines are listed in Table 1.

3.1.2 Software Configurations. We use Nvidia Nsight Compute [34], Nsight Systems [35], and CUPTI [32] for perfor-
mance counter collections. We use the CUDA Pipeline API for the Async Memcpy implementation since it showed better
performance than Arrive/Wait Barriers [51].

3.1.3 PM, UVM and Async Memcpy Configurations. We use the following six configurations in our experiments:
(a) baseline – without PM, UVM, or Async Memcpy,
(b) async – using Async Memcpy only,
(c) uvm – using UVM (with prefetch5) only,
(d) uvm_async – using UVM and Async Memcpy,
(e) pm – using PM only, and
(f) pm_async – using PM and Async Memcpy.

3.2 Overview of Benchmarks

In our performance studies, we use 18 realworld applications and 7 microbenchmarks, which are categorized into
three groups as shown in Table 2. These 25 workloads cover the domain of linear algebra, physics simulation, data
mining, image processing, and deep learning. We elaborate on these benchmarks in detail in this section.

3.2.1 Microbenchmarks. We use a set of microbenchmarks to gain a better understanding of the performance of PM,
UVM, and Async Memcpy. Each workload in the Microbenchmark suite uses one single CUDA kernel. The vector_seq
and vector_rand are workloads built atop of benchmarks used in the prior study [51]. In addition to Vector-to-Constant,
we include 5 additional microbenchmarks from Polybench [43]6. Vector-to-Vector (saxpy), Matrix-to-Vector (gemv), and
Matrix-to-Matrix (gemm) are considered as extensions to the two Vector-to-Constant workloads, each of which shares
similar computation patterns but different computation densities. 2D convolutions (2DCONV ) and 3D convolutions

5Our prior analysis proofed that prefetcher can improve the UVM performance[26]. If not specified, we assume UVM is used with prefetcher in this paper.
6We adjusted the Polybench codes to make them scalable for large input sizes. We also compared the performance of our own implementation with
cutlass [33] to guarantee the efficacy of our kernel implementations.
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Table 2. Benchmark programs with input information (contains 25 representative workloads from 5 diverse suites).

Suites Source Program
Name Description Input

Dimension Super Input Mega Input Other Input Info

Micro

Svedin et al. [51]
vector_seq Vector-to-Constant, element-wise arithmetic

operations on vector (sequential access) Vector (1D) 1024M 8192M 1 vector

vector_rand Vector-to-Constant, element-wise arithmetic
operations on vector (random access) Vector (1D) 1024M 8192M 1 vector

PolyBench [43]

saxpy Vector-to-Vector multiplication and addition Vector (1D) 1024M 4096M 2 vectors
gemv general Matrix-to-Vector multiplication Matrix (2D) 32K * 32K 64K * 64K 1 vector + 1 matrix
gemm general Matrix-to-Matrix multiplication Matrix (2D) 16K * 16K 32K * 32K 2 matrices

2DCONV general 2D convolution Grid (2D) 32K * 32K 64K * 64K 3*3 Kernel + 1
2D-matrix

3DCONV general 3D convolution Grid (3D) 0.75K * 0.75K
* 0.75K

1.5K * 1.5K *
1.5K

3*3*3 Kernel + 1
3D-matrix

Apps
(non-DL)

Rodinia [11]

LavaMD Calculates particle potential and relocation due to
mutual forces between particles within a 3D space Box (3D) 64 * 64 * 64 128 * 128 * 128 32 blocks, 100

elements per block

NW Needleman-Wunsch, a nonlinear global optimization
method for DNA sequence alignments Sequence (2D) 20K * 20K 40K * 40K 2 matrices

Kmeans An unsupervised machine learning algorithm used
for clustering data Point Vector (1D) 8192K 16384K 2 point vectors, each

point has 64 features

Srad Speckle Reducing Anisotropic Diffusion is a method
for ultrasonic and radar imaging applications Grid (2D) 20K * 20K 40K * 40K 6 matrices

Backprop An ML algorithm that trains the weights of
connecting nodes on a layered neural network Node Vector (1D) 32M 64M 1 node vector, each

node has 16 neurons

Pathfinder Solves the shortest or optimal path problem through
a 2D grid Grid (2D) 5M * 100 20M * 100 1 2D-grid + 2 1D-grid

HotSpot Simulates the thermal behavior of integrated circuits Grid (2D) 8K * 8K 12K * 12K 3 2D-grids

LUD LU Decomposition is an algorithm that calculates the
solutions of a set of linear equations Grid (2D) 16K * 16K 64K * 64K 1 2D-grid

UVMBench [17]

bayesian Bayesian network learning algorithm Node Matrix (2D) 50*250K 125*10M 1 matrix

KNN K-Nearest neighbors algorithm
Distance Grid
(2D), Point Grid

(2D)

16K * 16K,
16K * 128

32K * 32K,
32K * 512

1 distance 2D-grid + 2
point 2D-grid

Apps
(DL)

Darknet [45]

Resnet18 Residual Network with 18 convolution layers Image Batch Size 1 Batch Size 32 Image Size 224 * 224 * 3
Resnet50 Residual Network with 50 convolution layers Image Batch Size 1 Batch Size 32 Image Size 224 * 224 * 3

Yolov3-tiny Yolov3-tiny Image Batch Size 1 Batch Size 4 Image Size 416 * 416 * 3
Yolov3 Yolov3 Image Batch Size 1 Batch Size 4 Image Size 416 * 416 * 3

(3DCONV ) are fundamental kernels of a large number of computer vision and ML workloads, which have been gaining
increasing popularity in the last decade.

3.2.2 Real-world Applications. Our realworld application suite includes 10 non-deep learning (non-DL) workloads and
8 deep learning (DL) workloads (we consider training and inference as separate workloads).
Non-DL workloads. Our benchmark suite includes the widely used Rodinia [11] benchmark suite, which contains
29 applications covering domains of multimedia, arithmetic, signal/image processing, biological computing, and big
data applications. Instead of using the entire Rodinia suite, 8 diverse benchmarks are selected. We select lavaMD, NW,
Kmeans, Srad, Backprop, and Pathfinder based on the representativeness of the 6 workloads. They were classified into
different groups based on prior performance characterization studies [46]. We also include HostSpot and LUD, since
they were used in prior Async Memcpy studies [51].

We use workloads bayesian and KNN from Uvmbench [17], which is a comprehensive benchmark suite for UVM
studies (other workloads in Uvmbench are overlapped with Polybench and Rodinia). We implement the Async Memcpy

version of them as well.
DL workloads.We also study deep learning (DL) workloads since they are widely used in CPU-GPU heterogeneous
systems, especially in the last decade. Instead of single kernels, we choose end-to-end DL network profiling. We consider
Manuscript submitted to ACM
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Table 3. Parameter configurations. We focus on Super and Mega inputs in this paper.
Tiny Small Medium Large Super Mega

Mem 1∼8 MB 8∼64 MB 64∼512 MB 512MB∼1GB 1∼4 GB 4∼32 GB
1D Grid 256K 2M 16M 128M 1G 8G
2D Grid 512 ∗ 512 1𝐾 ∗ 1𝐾 4𝐾 ∗ 4𝐾 8𝐾 ∗ 8𝐾 32𝐾 ∗ 32𝐾 64𝐾 ∗ 64𝐾
3D Grid 64 ∗ 64 ∗ 64 128 ∗ 128 ∗ 128 256 ∗ 256 ∗ 256 512 ∗ 512 ∗ 512 1𝐾 ∗ 1𝐾 ∗ 1𝐾 2𝐾 ∗ 2𝐾 ∗ 2𝐾

both the inference and training phases of the four ML models. We choose darknet7 as the ML framework since it
is implemented in C rather than Python, making it easier to customize CUDA kernels with the three architectural
enhancements. We implement the PM, UVM, and Async Memcpy versions of darknet.

3.3 Benchmark and Machine Configurations

Benchmark performance highly depends on the chosen machine and workload configurations. In this section, we
examine how the workload input size and system configuration affect benchmarking outcomes, and we describe
our approach to selecting the appropriate configuration and input size. Specifically, Table 1 details the machine
configurations, while Table 3 defines six input sizes ranging from 1MB to 32GB. Furthermore, Table 2 provides detailed
information on the super and mega input sizes, which are the primary focus of the subsequent sections.

To ensure sufficient execution time to amortize system overhead, the program input size must be large enough.
While large inputs are commonly used in benchmarks to reduce measurement noise, prior work [26] shows that bigger
inputs do not always yield stable performance in CPU-GPU heterogeneous systems. In this paper, we extend our
previous investigation by deploying the same set of microbenchmarks on four additional machines (Table 1). We use
Machine-B, featuring AMD’s Milan (Zen 3) chiplet architecture [29], and Machine-D, which adopts AMD’s Genoa (Zen
4) chiplet architecture [10]. While AMD’s Infinity Fabric technology remains unchanged from Rome to Milan [29],
Genoa leverages Infinity Fabric 3.0 with GMI3 interface support for more stable and predictable cross-chiplet data
transfers [10]. To cross-validate our findings, we also include Machine-A with an Intel Skylake CPU (monolithic) and
Machine-C with an Intel Sapphire Rapids CPU (chiplet).

We ran each workload 30 times and plotted the distribution of each run8. Fig. 3 presents the overall execution time
distribution for the seven workloads in our microbenchmark suite under three different input sizes. On Machine-C and
Machine-D, performance remains more stable across different input sizes because these newer systems incorporate
updated CPUs, DRAM, and PCIe generations, yielding higher CPU-DRAM and CPU-GPU PCIe bandwidth. This reduces
congestion and delivers more consistent performance overall. As a result, we choose to mainly focus on Machine-C and
Machine-D with input sizes Super and Mega for the rest of our experiments.
Takeaway 1: To ensure that benchmarking results are broadly applicable to CPU-GPU heterogeneous systems, it is
important to select both input sizes and machine configurations carefully. Systems featuring newer CPU, DRAM, and
PCIe generations with larger (GB-level) input sizes typically yield less noisy results.

7Instead of using the CNN and other ML workloads in Uvmbench, we choose workloads (networks) in darknet [45], since darknet implemented both
inference and training for end-to-end network.
8We verified our findings under both specified and unspecified NUMA node configurations. In each case, results remained consistent because we focus on
a single-GPU scenario, and all program memory footprints lie well within the capacity of a single NUMA node.
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(b) Machine-A Super.
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(c) Machine-AMega.
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(d) Machine-B Large.
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(e) Machine-B Super.
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(f) Machine-B Mega.
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(g) Machine-C Large.
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(h)Machine-C Super.
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(i) Machine-C Mega.
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(j) Machine-D Large.
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(k) Machine-D Super.
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(l) Machine-D Mega.
Fig. 3. Execution time (distribution of 30 runs) on microbenchmarks with different input sizes. For each workload, from left to right,
the six bars indicate the six data transfer configurations (in the same order as Section 3.1.3).Machine-C andMachine-D are more
stable than Machine-A and Machine-B for all input sizes.

4 PERFORMANCE RESULTS

In this section, we provide a side-by-side comparison of the six setups across all benchmarks, breaking down the
overall execution time into GPU kernel execution, CPU-GPU data transfer, and data allocation time9. We analyze the
performance of microbenchmarks (Section 4.1) and realworld applications (Section 4.2 and Section 4.3) for various
configurations of Async Memcpy, UVM, and PM. This comparison helps determine whether a workload is limited by
CPU DRAM to GPU global memory data transfers or by internal GPU data transfers (from global memory to shared
memory), and what architectural configuration could help improve the performance.

9If CPU-GPU data transfers overlap with GPU kernel execution, e.g., in UVM, we determine the GPU kernel time by subtracting the CPU-GPU data
transfer time from the overall kernel time.
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(a) Machine-B Super input.
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(b) Machine-B Mega input.
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(c) Machine-C Super input.
vector_seq saxpy gemm gemv

vector_rand2DCONV 3DCONV AVG
0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e 
(n

or
m

al
ize

d 
to

 b
as

el
in

e) baseline async uvm uvm_async pm pm_async

(d) Machine-C Mega input.

vector_seq saxpy gemm gemv
vector_rand2DCONV 3DCONV AVG

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Ti
m

e 
(n

or
m

al
ize

d 
to

 b
as

el
in

e) baseline async uvm uvm_async pm pm_async

(e) Machine-D Super input.
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(f) Machine-D Mega input.
Fig. 4. Comparisons on Microbenchmarks (using latency as the metric, the smaller the better). From bottom (darkest) to top (lightest),
each shade shows gpu_kernel, memcpy, and allocation. The performance of a workload can benefit from using a combination of
Async Memcpy and UVM/PM if it benefits from using each technique individually.

4.1 Microbenchmarks

In this section, we present a performance comparison across six different configurations for seven microbenchmarks.
We use both Super andMega input sizes, as they exhibit relatively stable performance across multiple runs (onMachine-C

and Machine-D). Additionally, we include Machine-B10 to analyze how the machine system configurations impact the
performance of UVM and PM. We analyze the average performance from 30 runs and provide a side-by-side comparison
of the seven microbenchmarks, as shown in Fig. 4. We first examine the individual effect of Async Memcpy, UVM, and
PM, separately. Following that, we explore the combined effects of Async Memcpy with UVM and PM.
Async Memcpy: When considering the overall execution time, there is almost no performance difference between
baseline and async. Considering the average of the 7 workloads, by using async only, there is a 2.05% and 1.72% slow
down compared with baseline on Super and Mega when using Machine-C. When using Machine-D, similarly, there is a
6.12% and 4.91% slow down compared with baseline on Super andMega input sizes. However, the performance difference
(between async and baseline) is much more noticeable when comparing the pure GPU kernel time. For example, async
achieves 42.42% GPU kernel time reduction over baseline in the 𝑣𝑒𝑐𝑡𝑜𝑟_𝑠𝑒𝑞 workload while 143.37% increment over
baseline in the 3𝐷𝐶𝑂𝑁𝑉 workload (both with Mega input sizes on Machine-D). For CPU-GPU data transfer bounded

10Although Section 3.3 highlights some outlier data points on Machine-B, the performance impact of UVM and PM clearly exceeds the noise.
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workloads (like 𝑣𝑒𝑐𝑡𝑜𝑟_𝑠𝑒𝑞), the 42.42% kernel time reduction only results in 7.37% overall performance improvement.
For GPU kernel bounded workloads (like 3𝐷𝐶𝑂𝑁𝑉 ), the overhead due to the additional pipeline stages in async leads
to significant performance degradation.
UVM/PM: UVM is designed to provide a simplified programming interface for automating the CPU-GPU data transfer.
With an effective prefetcher, the GPU computation can be pipelined well with CPU-GPU data transfer. Overall, When
using UVM (with prefetch), there is 48.13% and 50.53% performance improvement over baseline on Machine-C for Super
and Mega input sizes, respectively. For GPU kernel and CPU-GPU data transfer time, UVM achieves 79.90% and 82.24%
time savings over baseline when using Super and Mega input sizes on Machine-C. However, the ease of programming
provided by UVM does not always guarantee a performance improvement [4, 6, 48]. An interesting observation is
that the performance of UVM is extremely sensitive to the machine system configuration. We conduct an A/B test by
comparing the UVM performance between Machine-C and Machine-B, as they have the same GPU model but different
machine system configurations. There is a 48.13% and 51.53% performance improvement on Machine-C compared with
using UVM with baseline for Super and Mega input sizes, respectively. However, on Machine-B, there is a 93.43% and
84.67% slowdown when comparing UVM with stanard for Super and Mega input sizes.

PM makes the operating system ensure that the corresponding physical pages remain in the main memory rather
than being paged to storage devices. If the allocation PM regions with high locality, the CPU-GPU data transfer time
can be reduced significantly by utilizing DMA data transfer [19]. Overall, When using PM, there is 57.82% and 56.63%
performance improvement over baseline on Machine-C for Super and Mega input sizes, respectively. However, the
performance improvement of PM (over baseline) is mostly affected by the machine system configuration. On Machine-B,
the performance improvement of using PM (over baseline) is only 16.99% and 18.56%. Machine-D sits in the middle
between Machine-B and Machine-C, the performance improvement of using PM (over baseline) is 43.43% and 45.02% for
Super and Mega input sizes, respectively.
Async Memcpy+UVM/PM: It is also worth investigating the potential for utilizing Async Memcpy in conjunction
with UVM or PM. We introduce our final two configurations, labeled uvm_async and pm_async, which combine two
architectural features. For workloads whose performance cannot benefit from additional pipeline stages due to inefficient
shared memory usage, such as 2DCONV, 3DCONV, and gemm, the extra control logic overhead of Async Memcpy can
degrade performance (examined further in Section 5.1). Such overhead results in the average performance improvement
of uvm_async over baseline is 49.21% for the Mega input size on Machine-C, which is slightly lower than uvm over
baseline (50.53%). Similarly, the performance improvement of pm_async is also slightly worse than async only (55.28%
versus 56.63% for the Mega input size on Machine-C). However, that does not mean Async Memcpy is not compatible
with PM/UVM in all scenarios. For workloads vector_seq and vector_rand, uvm_async can make the time savings over
baseline of the two workloads to 63.50% and 63.37%, which is better than the 59.98% and 61.25% time savings over
baseline when using uvm (for the Mega input size on Machine-C).
Takeaway 2: (1) The performance of UVM and PM is sensitive to machine system configurations. Generally, PM can
reduce CPU-GPU data transfer time, whereas UVM may not offer the same advantage. (2) If Async Memcpy brings
performance overhead to a workload, such overhead still exists when using Async Memcpy atop UVM/PM, e.g., 3DCONV.
(3) The performance of a workload can benefit from using a combination of Async Memcpy and UVM/PM if it benefits
from using each technique individually, e.g., vector_seq and saxpy.
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(a) Machine-B Mega input.
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(b) Machine-C Mega input.
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(c) Machine-D Mega input.
Fig. 5. Comparisons on realworld (non-DL) applications (using time as the metric, the smaller the better). From bottom (darkest) to
top (lightest), each shade shows gpu_kernel, memcpy, and allocation. The performance of UVM and PM is also sensitive to the type of
machine system configurations (same as the case of microbenmarks). The performance of Async Memcpy is more sensitive to the type
of workload, e.g., benefits the performance of lud but not knn.

4.2 Realworld non Deep Learning Applications

In addition to microbenchmarks, we show the execution time breakdown of the 10 realworld applications as well.
We use the average of 30 runs and Mega input sizes, shown in Fig. 5.
UVM/PM: The effect of machine system configurations still exists in realworld applications. When using Machine-B,
there is a 41.68% slow down (considering the geo-mean of the 10 workloads) when using UVM compared with baseline

for Mega input size. When using machines with other system configurations, UVM can improve performance. There is
23.99% and 4.61% performance improvement achieved by using UVM compared with using baseline on Machine-C and
Machine-D, respectively. PM also achieves 33.90% and 22.80% performance improvement over baseline onMachine-C and
Machine-D, respectively. Most of the speedups come from a reduction of CPU-GPU data transfer time. UVM achieves
67.35% and 48.03% memcpy time savings compared with baseline on Machine-C and Machine-D. Similarly, PM achieves
71.39% and 58.04% memcpy time savings compared with baseline on the two machines.
Async Memcpy: Similar to microbenchmarks, using Async Memcpy alone does not significantly impact overall perfor-
mance. On average, for the ten workloads tested, Async Memcpy results in only a 0.35% slowdown and a 0.43% speedup
compared to the baseline configuration for the Mega input size on Machine-C and Machine-D, respectively.
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(a) Inference.
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Fig. 6. Comparisons on realworld (DL) applications forMega input sizes onMachine-D (using time as the metric, the smaller the
better). From bottom (darkest) to top (lightest), each shade shows gpu_kernel, memcpy, and allocation. Performance is affected more
by UVM and PM than Async Memcpy. PM has more performance overhead on inference due to the frequent memory allocation.

Among the ten workloads, the performance of lud and knn is most affected by Async Memcpy. There is a 20.03%
performance improvement over baseline when using Async Memcpy on lud, while a 25.22% slowdown on knn (both
results on Machine-D). This is because lud has a higher computation density than knn, providing more opportunity for
an additional data transfer pipeline stage. Similar to knn, the microbenchmark gemm also has similar characteristics,
we will make further sensitive analysis in Section 5.1.
Async Memcpy+UVM/PM: In realworld applications, Async Memcpy together with UVM/PM can bring additional
performance benefits if the performance can benefit from usingAsync Memcpy.Async Memcpy pipelines the computation
and global memory to shared memory data transfer, so uvm_async can save GPU kernel time compared with uvm. For
instance, the uvm_async saves 8.38% GPU kernel time over baseline for workload kmeans on Machine-D, while uvm
spends 9.94% more GPU kernel time over baseline.

Although uvm_async generally outperforms uvm when standalone async usage yields performance gains, there are
exceptions, such as srad on Machine-C. The reason is that the performance of Async Memcpy is highly sensitive to the
amount of shared memory access (details in Section 5.1). Enabling the prefetcher (with UVM) can incur additional shared
memory traffic, making potential performance degradation when using Async Memcpy. In addition, Async Memcpy also
requires additional control instructions, making the performance even worse (on Machine-B and Machine-C). There
is another interesting data point lud. For lud, the performance only benefits from Async Memcpy but not UVM (with
prefetch). Because CPU–GPU data transfers for lud are negligible, the dominant time instead comes from moving data
between GPU global memory and shared memory. When combining these two techniques, lud maintains the same
speedup as Async Memcpy only; it is not affected by UVM overhead.
Takeaway 3: (1) UVM and PM are affected by both types of machine configurations and workload, while Async Memcpy

is mostly affected by workload characteristics. (2) Workloads with predictable data access patterns and bounded by
CPU-GPU data transfer, e.g., 2DCONV, can benefit more from UVM and PM (up to 4.96× speedups over baseline).

4.3 RealWorld Deep Learning Applications

We also assess the impact of UVM, PM, and Async Memcpy on deep learning applications. The results using Mega

input sizes on Machine-D are presented in Fig. 6 (similar patterns were observed with Super input sizes and on the
other two machines). Overall, Async Memcpy has minimal effect on the performance of these deep learning workloads,
while UVM and PM significantly influence performance.
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Fig. 7. FLOPs per shared memory access (top) and shared memory access per cycle (bottom) for mega input onMachine-D. Workloads
only with high FLOPs per shared memory access and shared memory access per cycle can benefit from using Async Memcpy.

PM cannot improve the performance of either inference or training workloads. On average, there is a 196.43%
slowdown for inference and a 25.30% slowdown for training compared to baseline. The reason is that deep learning
frameworks typically allocate pinned memory on a per-tensor, per-layer basis, resulting in a large number of allocation
function calls. Consequently, the primary overhead stems from pinned memory allocation [1, 7, 45], which distinguishes
these applications from microbenchmarks and other non-deep learning real-world applications. However, in an online
inference serving system with a warm start [2, 24, 27, 57], the data allocation overhead can be amortized. In addition,
using PM helps reduce CPU-GPU data transfer time by 29.75% for inference and 49.14% for training.

Similar to PM, UVM typically does not improve performance in most scenarios. During the training phase, convolu-
tional deep neural networks depend heavily on gemm (general matrix-to-matrix multiplication) kernels. Introducing
additional stages to the data transfer pipeline adds extra control logic to the GPU kernels, potentially reducing efficiency.
However, in the inference phase, yolov3 benefits from UVM. Given that yolov3 is the largest of the four networks, with
CPU-GPU data transfer accounting for over 70% of the total execution time, the CPU overhead of allocating managed
memory is amortized.
Takeaway 4: (1) UVM and PM affect the performance of gemm intensive deep learning applications more than Async

Memcpy. (2) Frequently allocating/deallocating pinned memory may introduce additional overhead when using PM for
deep learning applications.

5 IN-DEPTH ANALYSIS

We conduct an in-depth analysis of workloads by measuring GPU performance counters. We analyze performance
counters that contribute to performance variance when using Async Memory (Section 5.1) and examine how different
machine system configurations impact the performance of UVM (Section 5.2).

5.1 In-Depth Analysis for Async Memcpy

Analyzing performance counters is crucial for optimizing system performance and identifying bottlenecks, as
demonstrated in numerous prior studies [18, 40]. Based on the results on vector_seq, 3DCONV, lud, and knn, it is not
clear whether a workload whose execution time is dominated by GPU kernels can benefit from Async Memcpy. In this
section, we will dive deep into the GPU kernel to reveal the causes affecting Async Memcpy performance.
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Fig. 8. Performance counter comparison (forMega input onMachine-D) across different configurations. For each workload, from
left to right, the six bars indicate the six data transfer configurations (all in the same order). GPU kernel performance counters are
affected more when using Async Memcpy than using UVM/PM.

5.1.1 FLOPs per Shared Memory Access. Async Memcpy can potentially improve the program performance by overlap-
ping the data transfer from global memory to shared memory and SM computations. However, it will only improve the
overall performance if: (a) the program has intensive shared memory usage; and (b) the shared memory maintains high
locality to amortize the overhead of data transfer and additional control logic.

We profile the FLOPs (floating point operations) per shared memory access and shared memory accesses per GPU
cycle for both microbenchmarks and realworld applications, as shown in Fig. 7 (deep learning workloads using the
gemm kernel exhibit characteristics similar to those observed in the microbenchmark gemm). As shown in previous
results (Fig. 4 and Fig. 5), vector_seq, vector_rand, saxpy, and lud benefit the most from using Async Memcpy. These
workloads show significantly higher FLOPs per shared memory access and higher shared memory access per GPU
cycle compared to others (BN has high FLOPs per shared memory access but low shared memory utilization, so cannot
benefit from using Async Memcpy), highlighting the performance advantage of using Async Memcpy.
Takeaway 5: To benefit from Async Memcpy, a program must achieve high FLOPs to shared memory access ratio and
sustain substantial shared memory utilization.

5.1.2 Other Kernel Performance Counters. The ratio of FLOPs to shared memory accesses and shared memory utilization
are the two metrics that determine whether a program can benefit from Async Memcpy. Additionally, we examine other
performance counters affected by Async Memcpy to gain a deeper understanding of its impact. Specifically, we analyze
instruction mix, global memory throughput, and pipeline stall cycle breakdowns, as these metrics are affected the most
by Async Memcpy due to its added computation overhead on GPU kernels for managing data transfer pipelines.
Instruction Mix.We first use the GPU instruction mix to assess the potential cost of using Async Memcpy. We compare
the total number of memory accesses, arithmetic, and control instructions, and observe a significant difference across the
six configurations. For example, as shown in Fig. 8a, Async Memcpy results in a 66.62% increase in control instructions
compared to the baseline setup for the knn workload. Fig. 8b shows that Async Memcpy reduces memory instructions by
15.62% for the vector_seq workload compared to baseline. However, as illustrated in Fig. 8c, Async Memcpy introduces
107.82%, 17.49%, and 43.40% more memory instructions for the 3DCONV, lud, and knn workloads, respectively. In
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(c) # of GPU page faults.
Fig. 9. Performance counter comparison (forMega input) between different machine system configuration when using UVM.Machine-
D has higher global memory throughput and fewer kernel memory dependency stall cycles. The performance effect of UVM on
different machines does not have strong correlations with the number of page faults.

addition to workloads that are sensitive to Async Memcpy, we also present cases where the performance impact of
Async Memcpy is minimal, such as Yolov3. While the performance counters of Yolov3 are affected by Async Memcpy, the
changes are not significant enough to affect overall performance. In summary, while UVM and PM generally have little
effect on the instruction mix, Async Memcpy does alter it, potentially impacting overall program performance.
Global Memory Throughput and Pipeline Stall Cycles.We also compare global memory throughput across the
six configurations. As shown in Fig. 8d, Async Memcpy increases global memory throughput by 73.55% and 26.58%
compared to the baseline configuration for the vector_seq and lud workloads, respectively. However, for workloads like
3DCONV and knn, which suffer performance degradation with Async Memcpy, global memory throughput decreases by
59.44% and 11.07%, respectively, compared with the baseline setup.

Since Async Memcpy adds an extra stage to the data transfer pipeline, we also profile pipeline stall cycles. Among
the factors contributing to stalls, memory dependency and pipeline busy are the two counters that exhibit significant
changes with Async Memcpy. As illustrated in Fig. 8e, Async Memcpy reduces stall cycles due to memory dependency
by 39.71% for the vector_seq workload and by 6.90% for the knn workload, compared to the baseline configuration.
However, as shown in Fig. 8f, for the 3DCONV workload where performance is negatively impacted by Async Memcpy,
the stall cycles due to pipeline busy increase by 2.69% relative to the baseline, ultimately slowing overall performance.
Takeaway 6: (1) The overhead of Async Memcpy comes from an increased instruction footprint. (2) The performance
improvement of Async Memcpy comes from improved global memory throughput and reduced stall cycles due to
memory dependency and pipeline busy.

5.2 In-Depth Analysis for UVM and PM

The performance results from both microbenchmarks (Fig. 4) and realworld applications (Fig. 5) reveal that UVM
offers more promising improvements over the baseline configuration onMachine-C andMachine-D, but not onMachine-

B. This trend is especially clear for the vector_seq, saxpy, 2DCONV, and srad workloads. To better understand the
differences across machine configurations, we profile both the baseline and UVM setups and perform a side-by-side
comparison of Machine-B and Machine-D for these four workloads.

As shown in Fig. 9, usingUVM significantly reduces global memory throughput compared to the baseline configuration
(Fig. 9a). On average, global memory throughput dropped by 68.28% on Machine-B but only by 38.90% on Machine-D.
This drop in global memory throughput also leads to an increase in kernel stall cycles due to memory dependencies
(Fig. 9b). Interestingly, the performance degradation associated with using UVM is not due to the extra page faults, as
Machine-D exhibits more GPU page faults (Fig. 9c) in most applications (for the workload vector_seq, both Machine-B
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and Machine-D incur fewer than 50 page faults, making them unobservable in Fig. 9c.). Instead, the high data transfer
bandwidth on Machine-D results in less performance overhead from UVM compared to Machine-B.
Takeaway 7: On machines featuring newer CPU, DRAM, and PCIe generations, UVM and PM can deliver larger
performance gains. These improvements arise not from fewer GPU page faults, but from higher data transfer bandwidth.

6 GUIDELINES FOR PROGRAMMERS

Based on the performance implications explored in Section 4 and Section 5, we now offer guidance for programmers
on applying these insights.
Async Memcpy: Programs with high compute density and heavy shared memory usage can see performance benefits
from using Async Memcpy (Fig. 7). Although we obtain these metrics through runtime profiling, they are also accessible
via static program analysis tools. As a result, programmers can gain valuable insights before implementing the Async
Memcpy version and make more informed decisions.
UVM: Our performance analysis indicates that the benefits of UVM are highly dependent on machine system configura-
tions, which are best assessed through runtime profiling rather than static analysis. From a programmer’s perspective,
converting a program to use UVM demands considerably less effort than adapting it for Async Memcpy. Moreover,
as programmers develop a deeper understanding of workload memory access patterns and data transfer bandwidth
continues to improve, leveraging UVM (with prefetch) for workloads with predictable memory access patterns becomes
an increasingly attractive option.
PM: PM can reduce CPU-GPU data transfer time if there is sufficient physical CPU memory. However, if an application
frequently allocates small objects, the overhead of pinned memory allocation may outweigh its benefits.
Async Memcpy+UVM/PM: Our analysis indicates that when a program benefits from Async Memcpy, adding PM is
generally safe since it leaves the shared memory access pattern unchanged. However, when using UVM, especially with
prefetchers, programmers should be cautious, as prefetching can result in increased runtime data transfers between
shared and global memory.

7 SENSITIVITY STUDIES

Different workloads exhibit unique characteristics, such as variations in hardware performance counters (discussed
in Section 5), leading to different performance outcomes when using data transfer techniques like PM, UVM, and
Async Memcpy. Moreover, even within a single workload, overall performance can be influenced by GPU program
hyperparameters, including the number of CUDA blocks, threads, and L1-Cache/shared memory partition. These
configurations cannot be determined by compilers automatically and have to be assigned by CUDA programmers. In
this section, we further explore how Async Memcpy and/or UVM/PM are sensitive to these configurations.

7.1 CUDA Block and Thread

Programmers define the parallelism of each CUDA program according to the GPU resource hierarchy (Grid, Block,
Thread) as a guideline. Since there are virtually no restrictions11 on the number of blocks in the entire GPU grid, this
transparency allows large workloads to be easily programmed on GPUs without considering the actual hardware
resource limitations. In this section, we explore how the performance of PM, UVM, and Async Memcpy is affected by the
number of blocks and threads in the CUDA program.

11CUDA uses 16-bit integers for block indices in the 3D grid. As long as the block index does not overflow, there will be no compilation errors.
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Fig. 10. Sensitivity of vector_seq with respect to # of blocks. From bottom (darkest) to top (lightest), each shade shows gpu_kernel,
memcpy, and allocation. Performance remains stable when # of blocks changes.
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Fig. 11. Sensitivity of vector_seq with respect to # of threads per block. From bottom (darkest)
to top (lightest), each shade shows gpu_kernel, memcpy, and allocation. Performance varies
when # of threads changes.
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In Nvidia A100 and H100 GPUs, at most 2,048 threads can be mapped to one SM unit (H100 has 132 SM units, each of
which contains 128 CUDA cores [37]). How Async Memcpy and/or UVM/PM would affect the CUDA block and thread
to the real GPU core mapping is worth exploring. With more blocks, the entire input space is partitioned into finer
granularity chunks. With more threads in one block, the parallelism can be increased but the per-thread shared memory
resource gets reduced, due to the limited shared memory capacity (224KB per SM on H100).

We first explore the effect of the number of blocks on the overall system performance. We set the number of threads
per block as 256, and change the number of blocks from 4096 to 16. We use the vector_seqworkload since the computation
pattern of this workload is simple and can be flexibly partitioned into a different number of blocks (and threads). In
addition, the performance of vector_seq is affected by multiple factors as shown in Section 5.1 (Fig. 8). We plot the
execution time breakdown of vector_seq in Fig. 10. Interestingly, there is no obvious performance change (∼2%) on all
six configurations when using a different number of blocks. On average, async, uvm, uvm_async, pm, and pm_async

achieves 8.06%, 0.66%, 8.12%, 42.06%, and 50.19% performance improvement over baseline, respectively.
In addition to varying the number of CUDA blocks, we also investigate how changing the number of threads per

block affects performance while keeping the total number of CUDA blocks fixed12. As shown in Fig. 11, the program
performance is more sensitive to the number of threads per block (more than 50% variance when using different
numbers of threads). The reason is that when there are fewer than 256 threads, GPU resources remain underutilized
(H100 has 16, 896 CUDA cores). The execution time breakdown also confirms this. The GPU kernel execution time of
using 32 threads is 17.79× more compared with using 1024 threads. Though the performance downgrades when using
fewer threads, async performs much better than baseline (4.67% speedups on 1024 threads, but 28.58% speedups on 32

12We set the number of blocks as 256, which is larger than in our previous analysis [26] because the Nvidia H100 features 2.4× as many CUDA cores as
the Nvidia A100.
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Fig. 13. Sensitivity of vector_seq with respect to L1-Cache/Shared Mem partition (4096 blocks, 256 threads per block). From bottom
(darkest) to top (lightest), each shade shows gpu_kernel, memcpy, and allocation. Excessive allocation of shared memory degrades
the performance of UVM, PM, and Async Memcpy.

threads). The reason is that with the same per-block shared memory capacity, fewer threads in one block can lead to a
deeper buffer for each thread and larger FLOPs per shared memory access (Fig. 12).
Takeaway 8: The performance of UVM, PM, and Async Memcpy is not sensitive to the number of CUDA blocks, but
very sensitive to the number of threads per block. The performance improvement of Async Memcpy is more prominent
when using less number of threads per CUDA block.

7.2 L1-Cache/Shared Memory Partition

Nvidia Ampere and Hopper architecture features a unified L1 cache, texture cache, and shared memory for a total of
256KB per SM. The shared memory can be configured to use up to 224KB of the unified memory while the rest is used
for both the L1 and texture cache [37]. The L1-cache/shared memory partition is decided by CUDA programmers, so it
is important to understand the trade-offs in making the partition decisions.

It is important to investigate whether Async Memcpy, UVM, and PM are sensitive to the partitioning of the L1
cache and shared memory. With UVM, fetching data into shared memory can trigger page faults, while Async Memcpy

mitigates this by pipelining computation and data transfer through double buffering, making an efficient partition even
more critical. Additionally, the L1 cache/shared memory partition directly influences the maximum number of threads
that can be scheduled on a single SM [50]. For example, although the Nvidia driver might theoretically map up to eight
CUDA blocks (with 256 threads each) to one SM, if each block is allocated 128KB of shared memory, then only one
block can be scheduled on that SM. Thus, it is valuable to study whether reducing the number of threads per SM affects
overall performance.

We increased the shared memory capacity from 2KB to 128KB and evaluated performance across six different config-
urations, as shown in Fig. 13. Notably, increasing shared memory from 2KB to 64KB consistently boosts performance,
with improvements of 1.51%, 2.62%, 1.40%, 1.91%, 2.73%, and 3.53% across the configurations, respectively. Beyond 64KB,
the per-thread buffer depth becomes sufficient to effectively pipeline kernel computation with data transfers from
global to shared memory. However, when the shared memory is set to 128KB, overall performance can decline because
the L1 cache becomes a bottleneck. For example, while Async Memcpy shows a 9.13% improvement over the baseline
(compared to a 4.84% improvement with only 2KB of shared memory), the total performance remains lower than that
achieved with a smaller shared memory allocation. This finding highlights the importance of reserving enough L1
cache to avoid GPU kernel computation pipeline stalls caused by cache misses.
Takeaway 9:While increasing shared memory can boost the effectiveness of Async Memcpy, it remains essential to
reserve enough memory for the L1 cache.
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Fig. 14. Without/with the inter-job pipeline. H-D and D-H are the abbreviations of Host-to-Device and Device-to-Host.

8 A NEW DATA TRANSFER MODEL

Although Async Memcpy and UVM/PM can improve performance in CPU-GPU heterogeneous systems, current data
transfer pipelines still have limitations. In this section, we introduce a new data transfer model that leverages inter-job
pipelining. Using the profiling results presented earlier, we derive preliminary estimates for the performance gains of
this approach. We also prototyped the new data transfer model on real hardware to demonstrate the trade-offs and
outline future research directions.

8.1 Limitations of PM, UVM and Async Memcpy

UVM improves the system performance by overlapping data transfer and computation. PM improves the system
performance by avoiding swapping out OS papers with high locality. Based on the execution time breakdown (average
of the 18 realworld applications on Machine-C using mega input size), the CPU-GPU data transfer time decreases from
57.96% to 24.90% and 25.09% of the overall execution time, when compared baseline with UVM and PM. Because data
transfers now take less time, a larger proportion of the execution is devoted to GPU kernel processing (from 41.84% to
59.25% and 63.80% for UVM and PM, respectively).

Although Async Memcpy is compatible with UVM/PM, the time devoted to GPU kernel execution remains relatively
low, leaving GPUs idle for over 60% of the total execution time. Additionally, because Async Memcpy and UVM do
not enhance CPU task performance, overall system time becomes constrained by data allocation operations (e.g.,
cudaMalloc() and cudaFree() executed on CPUs). While data allocation accounts for only 18.99% of total execution time
under the baseline configuration, it increases to 37.66% when using Async Memcpy and UVM.

8.2 Directions for New Data Transfer Models

Overlapping data allocation with other tasks, such as data transfer and GPU kernel execution, is a promising direction
for improving the data transfer pipeline. However, data allocation typically needs to be completed before data transfer
and kernel execution for each workload, making it impractical to overlap these tasks in most scenarios. An exception
exists when GPU jobs (kernels) are processed in batches. In this case, the data allocation for the second job (kernel) can
occur while the first job (kernel) is being processed, which could be leveraged in Kernel-as-a-Service (Kaas) systems [42].
Overlapping data allocation across kernels represents a new data transfer model that could be explored.

To better illustrate how this new data transfer model operates alongside Async Memcpy and UVM/PM, we present a
visual comparison in Fig. 14, showing the current pipeline (top half) and the new data transfer model (bottom half).
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host_A[16], host_B[16], host_C[16];
device_A[16], device_B[16], device_C[16];
for (i = 0; i < 16; i++) {

cudaMalloc(device_A[i]);
cudaMalloc(device_B[i]);
cudaMalloc(device_C[i]);
cudaMemcpy(device_A[i], host_A[i]);
cudaMemcpy(device_B[i], host_B[i]);
gemv(host_A[i], host_B[i], host_C[i]);
cudaMemcpy(host_C[i], device_C[i]);
cudaFree(device_A[i]);
cudaFree(device_B[i]);
cudaFree(device_C[i]);

}

Without Overlapping Allocations with Kernel Execution                                               

(a) Without the inter-job pipeline.

host_A[16], host_B[16], host_C[16];
device_A[16], device_B[16], device_C[16];
cudaMalloc(device_A[0]);
cudaMalloc(device_B[0]);
cudaMalloc(device_C[0]);
for (i = 0; i < 16; i++) {

sub-stream {
cudaMallocAsync(device_A[i + 1]);
cudaMallocAsync(device_B[i + 1]);
cudaMallocAsync(device_C[i + 1]);

}
cudaMemcpy(device_A[i], host_A[i]);
cudaMemcpy(device_B[i], host_B[i]);
gemv(host_A[i], host_B[i], host_C[i]);
cudaMemcpy(host_C[i], device_C[i]);
sub-stream {

cudaFreeAsync(device_A[i]);
cudaFreeAsync(device_B[i]);
cudaFreeAsync(device_C[i]);

}
}

Overlapping Allocations with Kernel Execution                                               

(b) With the inter-job pipeline.
Fig. 15. CUDA programming Pseudo-code without/with the inter-job pipeline.
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(b) Performance on gemm.
Fig. 16. Prototyping overlapped data allocation with GPU kernel execution of gemv and gemm on Machine-D.

By integrating UVM and Async Memcpy, data transfers from CPU memory to GPU global memory, and from global
memory to shared memory, can overlap with GPU kernel execution The new model aims to reduce overall execution
time by overlapping CPU and GPU execution across different jobs (kernels). Once the GPU kernel for job 1 begins,
job 2 can initiate data allocation (𝑐𝑢𝑑𝑎𝑀𝑎𝑙𝑙𝑜𝑐𝑀𝑎𝑛𝑎𝑔𝑒𝑑 ()) using the idle CPU. After the GPU kernel of job 1 completes,
job 2 can start its own kernel execution, while job 1 handles data deallocation (𝑐𝑢𝑑𝑎𝐹𝑟𝑒𝑒 ()) on the CPU. Ideally, the
37.66% of time spent on data allocation (and deallocation) could overlap with the 37.79% of GPU kernel time, potentially
resulting in more than 30% overall performance improvement. This approach offers a promising direction to improve
the CPU-GPU data transfer pipeline.

8.3 Prototyping the New Data Transfer Model

We prototyped the new data transfer model that overlaps data allocation/deallocation with kernel execution. We
evaluated it using a synthetic workload comprising 16 gemv kernels, each with a 4K×4K (which is the large input
size used in Fig. 3) input size (Pseudo-code in Fig. 15a). By overlapping GPU kernel execution with data allocation,
we initiated allocation for the next kernel in a sub-stream while executing the current kernel on the main stream
(Pseudo-code in Fig. 15b).

We implemented overlapping data allocation and deallocation with GPU kernel execution for gemv and gemm on
Machine-D, as these two kernels are widely used in modern machine learning frameworks [1, 7, 24, 45]. Figure 16
illustrates that overlapping data allocation with GPU kernel execution can yield up to 1.44× speedup over the baseline
approach of serializing data allocation and kernel execution. Overlapping data allocation with GPU kernel execution
yields greater performance benefits for gemv, because gemm is more compute-bound and devotes most of its runtime
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to computation (Fig. 4). However, for tiny input sizes, the overhead of initializing a separate CUDA stream for data
allocation exceeds the cost of the CUDA kernel, leading to reduced performance. Additionally, using mega input sizes
can lead to out-of-memory errors because the memory allocated by the running kernel has not yet been released before
allocating memory for the next kernel in the background, which doubles the GPU memory capacity requirement.
Future Research Directions: (1) A GPU program analysis framework that determines whether a program can benefit
from overlapping data allocation and GPU kernel execution. (2) A fine-grained GPU memory allocator capable of
allocating and deallocating memory in chunks to mitigate out-of-memory issues during overlapped data allocation and
kernel execution.

9 CONCLUSION

In this paper, we explored the performance implications of Async Memcpy, UVM, and PM. We conducted an in-depth
characterization study and developed a benchmark suite comprising 7 microbenchmarks and 18 realworld applications.
We believe this benchmark suite has the potential to facilitate further research in this area.

We observed performance gains of 24% and 34% with UVM and PM, respectively, on realworld applications. By
pipelining GPU computation with global-to-shared memory data transfers, Async Memcpy yields roughly 20% improve-
ments for programs with high compute density and intensive shared memory usage (e.g., kmeans and lud running on
top of UVM/PM). Breaking down the execution time provides developers with practical guidelines: workloads with both
high compute density and heavy shared memory demands can benefit from Async Memcpy, UVM is advantageous for
workloads with regular data access patterns, and PM offers benefits for workloads with less intensive data allocation.

Additionally, we conducted a sensitivity study to highlight how the performance of Async Memcpy and UVM/PM can
be affected by factors such as the number of threads per block and the L1-cache/shared memory partition strategy.
These parameters should be taken into account in compiler optimizations and resource mapping designs. We also
outlined future research directions, emphasizing the importance of collaborative efforts between system software and
hardware architecture communities to advance the optimization of data transfer pipelines.
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