Performance Characterization of NET Benchmarks

Aniket Deshmukh*¥, Ruihao Li*¥, Rathijit Sen', Robert R. Henryjf', Monica Beckwith?, Gagan Guptai
*The University of Texas at Austin TMicrosoft Gray Systems Lab iMicrosoft
{a.deshmukh, liruihao} @utexas.edu, {rathijit.sen, robhenry, monica.beckwith, gagg} @microsoft.com

Abstract—Managed language frameworks are pervasive today,
especially in modern datacenters. .NET is one such framework
that is used widely in Microsoft Azure but has not been well-
studied. Applications built on these frameworks have different
characteristics compared to traditional SPEC-like programs due
to the presence of a managed runtime. This affects the tradeoffs
associated with designing hardware for such applications.

Our goal is to study hardware performance bottlenecks in
NET applications. To find suitable benchmarks, we use Principal
Component Analysis (PCA) to find redundancies in a set of
open-source .NET and ASP.NET benchmarks and use hierar-
chical clustering to create representative subsets. We perform
microarchitecture and application-level characterization of these
subsets and show that they are significantly different from SPEC
CPU17 benchmarks in branch and memory behavior, and hence
merit consideration in architecture research. In-depth analysis
using the Top-Down methodology reveals that NET benchmarks
are significantly more frontend bound. We also analyze the
effect of managed runtime events such as JIT (Just-in-Time)
compilation and GC (Garbage Collection). Among other find-
ings, GC improves cache performance significantly and JITing
could benefit from aggressive prefetching and transformation of
hardware microarchitectural state to prevent frequent cold starts.
As computing increasingly moves to the cloud and managed
languages grow even more in popularity, it is important to
consider .NET-like benchmarks in architecture studies.

I. INTRODUCTION

.NET is an open source, cross-platform software devel-
opment framework comprising object-oriented programming
languages and libraries [18]. Introduced by Microsoft, .NET
is used to develop applications for a variety of platforms,
ranging from the web to mobile to desktop to cloud to internet-
of-things and more. .NET includes C#, F# and Visual Basic
languages, provides a Common Language Runtime (CLR), and
is supported on Windows, Linux, and macOS. The CLR gen-
erates code using a just-in-time (JIT) compiler and manages its
execution while providing services for memory management,
garbage collection (GC), type safety, thread management, ex-
ception handling, etc. ASP.NET is a framework for developing
web apps and services using .NET and C# [17]. For example,
.NET is commonly used to develop Microsoft Azure applica-
tions [7], Azure SQL DB services [2], serverless programming,
Cosmos DB services [1], the Bing search engine [3], Stack
Overflow [25], etc. Over 3700 companies contribute to .NET
and it is one of the most popular development platforms with
6M users and growing [13].

Computer architects routinely use benchmark suites like
SPEC [11], Renaissance [36], PARSEC [21], CloudSuite [28],

$Work done while interning at Microsoft. Both authors made equivalent
contributions to this work.

MLPerf [37], etc., to explore hardware and software pro-
posals. These suites primarily include programs written in
non-managed languages such as C/C++/Fortran that execute
directly on the host machine, and programs written in Java
whose execution is managed by a runtime that provides
services such as Garbage Collection (GC), Just-In-Time (JIT)
compilation, etc. The microarchitectural behavior of man-
aged languages is different from traditional programming
languages. Besides Java, .NET is an important managed frame-
work [9], but has not been studied well. Given its growing
popularity [10], we believe that an in-depth study of .NET
programs has long been due.

Although Java and .NET are both managed frameworks,
they differ in implementation. For example, Java’s adaptive
and dynamic JIT optimization techniques and heuristics are
different from .NET. Threading, algorithms and heuristics
for GC are also different between the two. These and other
differences can lead to different performance profiles. Also,
Java benchmarks [12], [39], [22] are geared more towards
Java Virtual Machine (JVM) studies. Hence, we posit that
studying .NET benchmarks is essential for optimizing future
architectures for managed languages. We focus on Online
Transactional Processing tasks and core library functions that
are key components in important real-world .NET applications.

To the best of our knowledge, this work is the first to
present a detailed characterization of .NET benchmark suites
— a microbenchmarks suite [19], and an ASP.NET benchmark
suite containing datacenter web app frameworks [20].

e We use principle component analysis (PCA) and hier-
archical clustering to create representative subsets of 8
benchmarks each from 2906 .NET microbenchmarks and
53 ASP.NET benchmarks to reduce experimentation time
in architecture studies. We use a time-based metric similar
to SPECspeed [16] to validate the accuracy of our subset.
(81V.)

e PCA based comparison shows that many .NET and
ASPNET applications exhibit significant differences
compared to SPEC CPU17, particularly with respect to
branch and memory hierarchy behavior, and hence should
be included in architecture studies. (§V-C.)

« Instruction mix analysis shows that ASPNET and .NET
programs have similar distributions of branch, load and
store instructions, but are different from SPEC CPU17
programs, which have more diverse branches, more loads
and fewer stores. (§V-B.)

o Through raw performance counter results and Top-Down
analysis, we show that I-cache, I-TLB and BTB misses
contribute significantly to pipeline stalls in ASP.NET and

.NET benchmarks unlike SPEC CPU17. We also show
that contention at the Last Level Cache (LLC) is a major
bottleneck when scaling ASP.NET-like web applications.
(§VI-B2.)

o Experiments on an Arm machine reveal that Arm archi-
tectures and the associated software stack may not yet be
tuned for .NET-like workloads as compared to the more
mature Intel architectures, e.g., Arm TLB performance
can be an order of magnitude worse than Intel. (§V-D.)

o While the adverse impact of frequent Garbage Collection
has been studied ([31],[33]), we show that GC has a
positive impact on cache performance and thus provides
additional benefits when accelerated in hardware. Increas-
ing GC aggressiveness shows an average 0.59 % reduction
in LLC-MPKI for .NET applications. (§VII-A2.)

o Our studies also reveal that code JITing leads to frequent
cold starts in the caches, TLB and program counter
indexed micro-architectural structures such as the branch
predictor. This necessitates better prefetching and trans-
formation of micro-architectural state to avoid the perfor-
mance penalty due to cold starts. (§VII-Al.)

II. .NET BENCHMARKS OVERVIEW

We obtained open source .NET [19] and ASP.NET [20]
benchmarks, curated to test performance, from their respective
Github repositories. Repositories are periodically updated; for
this study, we used the snapshots listed in the references. The
suites are briefly described below.

A. .NET

The .NET suite, written in C#, includes a total of 2906 mi-
crobenchmarks, divided into 44 categories, 21 of which are a
collection of system-level benchmarks and 23 are application-
level benchmarks. System-level benchmarks include basic
NET libraries, for mathematical functions (e.g., ABS, co-
sine, sine), file 10, network transmission, etc. Application-
level benchmarks include real-world applications or algorithms
which use data structures like linked lists, stacks, trees, etc.
When experimenting, either a category as a unit or each
benchmark individually can be run in a dedicated process
resulting in either 44 or 2906 runs.

B. ASPNET

The ASPNET suite contains a total of 53 benchmarks,
including those from the TechEmpower Web Framework
Benchmarks [14], which measure the performance of various
aspects of client-server constructs. The benchmarks consist
of four components: server, client, database and benchmark
driver to model the application’s environment. The client sends
requests to the server, which processes these requests while
communicating with the database and returns a response to
the client. The benchmark driver coordinates building and
execution of the benchmark on both the client and the server,
and gathers statistics. The server, client and database are all
launched within docker containers. Once started, the bench-
mark driver can send commands to each component to run a
variety of scenarios.

TABLE I: Characterization metrics.

Categories | Metrics | Normalization Unit | ID
ISA
Kernel instructions Percentage 0
User instructions Percentage 1
Inst Mix Branch instructions Percentage 2
Memory loads Percentage 3
Memory stores Percentage 4
Micro-architecture Events
CPI Cycle per instruction Per instruction 5
CPU Usage CPU utilization Percentage 6
Branch Branch misses MPKI 7
L1-dcache misses MPKI 8
Cache L1-icache m'isses MPKI 9
L2 cache misses MPKI 10
LLC misses MPKI 11
iTLB misses MPKI 12
TLB dTLB load misses MPKI 13
dTLB store misses MPKI 14
Memory read bandwidth MB per sec 15
Memory write bandwidth MB per sec 16
Memory -

Memory page miss rate Percentage 17
Page faults PKI 18

Run-time Events
Garbage Collection GC/Tr|gg'ered' PKI 19
GC/AllocationTick PKI 20
T Method/JittingStarted PKI 21
Exception Exception/Start PKI 22
Contention Contention/Start PKI 23

III. EVALUATION METHODOLOGY

A. Characterization Metrics

We characterized the benchmarks along three vectors, (i)
ISA, (ii) microarchitecture events, and (iii) application-level
run-time events, summarized in Table I. For ISA character-
ization, we examined the instruction mix. Following other
studies [34], [32], [36], we measured CPI, CPU usage, branch,
cache, TLB and memory subsystem events for microarchitec-
ture characterization.

Run-time events can have significant impact on the perfor-
mance of managed language workloads. We measured four
types of events in our study. GC manages allocation and
release of memory for an application, which affects cache,
TLB, and memory behavior [23], [24]. JIT compilation inter-
cedes the regular course of execution to generate and optimize
machine code, which can impact I-cache, branch and memory
performance [29]. Exceptions and thread contention are also
included in our metrics, since they can be major factors in
large real-world multi-threaded applications [27], [40].

The .NET microbenchmarks are short running applications,
up to a few seconds long. To amortize their warmup overheads,
we ran them 15 times and discarded the data from the first run.
To measure steady state performance for ASP.NET (whose
run-time is user-specified), we ran the benchmarks in warmup
mode for a long duration and progressively reduced the
warmup period while ensuring the steady state measurements
had a variance of less than 5%.

TABLE II: Hardware configurations of 3 different machines.
CPU = physical core, vCPU = logical core.

Intel(R) Xeon(R) Intel(R) Core(TM)

E5-2620 v4 19-9980XE Arm
ISA x86-64 x86-64 AArch64
#CPU/#vCPU 16/32 18/18 32/32
oS Ubuntu 16.04 Ubuntu 20.04 Ubuntu 20.04
L1d Cache 32KiB 32KiB 32KiB
L1i Cache 32KiB 32KiB 32KiB
L2 Cache 256KiB 1MiB 256KiB
L3 Cache 20MiB x2 24.8MiB 32MiB
Nom Freq 2.1GHz 3.0GHz 1.6GHz
Max Freq 3.0GHz 4.5GHz 2.2GHz

B. Hardware & Software Platforms

We characterized the benchmarks on two x86-64 and one
AArch64 machines, summarized in Table II. The majority of
our experiments were run on the Intel i19-9980XE machine
with Ubuntu 20.04. Although widely used in embedded sys-
tems, Arm processors are being increasingly considered for
servers, as seen in the NO.1 FUGAKU supercomputer [38].
Hence we included a commercial Arm platform in our eval-
uation. The CPU core in the single-socket Arm system can
decode up to 4 and issue up to 6 micro-ops each cycle.
The core includes 2 LSUs, a special store unit, a 128-entry
loop buffer, a 180-entry ROB, dedicated I-TLB and D-TLB,
and a 2K-entry secondary TLB. To validate our methodology
for creating a representative subset of the benchmark suites,
we use the Intel E5-2620 v4 machine as a baseline machine
running Ubuntu 16.04.

To run ASP.NET benchmarks, we used two Intel 19-9980XE
machines (with identical configurations). The server was run
on one machine, and the client, database and benchmark
driver on the other. All measurements were taken on the
server machine. The latest stable NET Core compiler, version
3.1.7 [8] was used to compile benchmarks. We used the
Linux perf tool [4] for collecting microarchitecture hardware
performance counters, and the Lttng tool [26] for collecting
run-time traces. We used the foplev tool [15] for top-down
analysis. We also logged the runtime stats generated by the
.NET framework itself.

IV. REDUNDANCY ANALYSIS AND SUBSET CREATION

As a first step, we reduce the large corpus of benchmarks
into a smaller representative set. Using such a subset simplifies
architecture studies and is shown to be adequate [34], [35].
We create two subsets, one each for .NET and ASP.NET. For
comparison, the SPEC CPU17 suite is also reduced to a subset.

A. Characterization Metrics Redundancy Analysis

As prior works suggests, four metrics can cover 90% of the
variance in different workloads [34], [36]. We use a similar
strategy to find potential redundancy within the 24 metrics in
Table 1.

Characterization metrics should cover factors contributing
to the performance variance between workloads. Ideally, all

metrics would be independent of each other without any
correlation between them. This would imply that there is
no redundancy in the characterization metrics. In reality,
however, metrics are interrelated. For instance, changes in the
LLC behavior can affect not only CPI but also L1/L2 cache
performance [30]. This is true for runtime events as well. For
example, GC settings can impact LLC performance [23].

To remove the correlation among these metrics, we lever-
age the PCA technique [41], [34], [36]. PCA reduces the
dimension of data by converting an i-element input vec-
tor X(X1,Xs,...,X;) into a j-element, j<i, output vector
Y (Y1,Ys,...,Y;). In vector Y, each element is linearly un-
correlated, and the j elements in it are called Principal Com-
ponents (PRCOs). For example, Y] represent the first PRCO.
Each PRCO is a linear combination of various elements of
the input vector with certain weights known as loading factors
(matrix W in Equation 1).

i %
Vi=) WinXpYo=Y WaonXp;.. (1)
n=1

n=1 =
We picked the top four PRCOs for clustering since four
PRCOs can cover the majority of the variance in benchmark
suites [36]. This helped reduce the number of characterization
metrics from 24 to 4.

Table III lists the loading factors of each metrics in descend-
ing order (we only list the top 3) for the four PRCOs. There are
negative loading factors since we perform data standardization
before the PCA. The variance of each PRCO is also listed; the
top 4 PRCOs we selected cover 79% of the variance.

B. Benchmark Suites Redundancy Analysis

Prior works have demonstrated the redundancies in the
SPEC CPU17 suite [34] using PCA. However, we cannot di-
rectly apply the same methodology to the .NET and ASP.NET
suites. In the ASP.NET suite, performance is evaluated using
throughput instead of execution time. Also, the .NET mi-
crobenchmarks can be analyzed as a set of 44 categories or
2906 individual benchmarks.

The first step in finding potential redundancies is to establish
similarity between workloads which we define by the linkage
distance of the first four PRCOs. We then use hierarchical
clustering to group the workloads with high similarity based
on the linkage distance table. The cluster hierarchy of the
.NET microbenchmark suite when analyzed as a set of 44
categories is shown in Figure 1 as a tree. Each leaf node
represents one benchmark. Two nodes with the shortest linkage
distance merge into a parent node recursively until the root
node is generated. Since benchmarks under a node are similar,
a representative subset can be generated by picking one bench-
mark from each of the nodes at a given level. For example,
based on the tree level in Figure 1, a 2-element representative
subset can be generated by selecting one benchmark out of
the first 42 benchmarks (from System.IO to SeekUnroll) and
one out of the last two benchmarks (from System.Diagnostics
to CscBench). When more than one choice was available, we
picked one randomly.

TABLE III: Loading factors of the top 3 metrics on the four principal components.

PRCO1 (0.306) PRCO2 (0.229)

PRCO3 (0.148) PRCO4 (0.107)

Metric Load | Metric Load | Metric Load | Metric Load
L2 MPKI 0.320 | D-TLB store-MPKI 0.353 | inst_mix_mem-stores 0.347 inst_mix_branch-instructions ~ -0.431
I-TLB MPKI 0.322 | memory_bandwidth_read 0.451 | branch MPKI -0.357 | inst_mix_mem-loads -0.404
D-TLB load-MPKI 0.323 | memory_bandwidth_write ~ 0.407 | gc/triggered -0.318 | inst_mix_mem-stores -0.310
System.IO kernel_instructions MW user_instructions
System.Runtime 1
System.Buffers gg
BenchmarksGame . g
System.Tests gz %
System.Text]__'— 05 % -
System.Collections 0.4 '// 7 / I/
System.Threading 0.3 [7 % Z % / / /
System.Perf_Convert gi % é é Z f % Z é % 7 é
St Eorpovariodd 5355233 TIPS LESELEETEES
fiigesieiigriig: Cisid
LingBenchmarks Eg '5!—%%517:’35'5“3“5 g‘_"'n‘d
GuardedDevirtualization £ O ZE LB |gELTSEES -g 2 Ol] S
System.Reflection 2 3388 ?: 2/ g8 v nE: @ € an
Devirtualization '8 E '8 E] 2 2 E &8 g
Inlining g S % E 2 S a2 2
System.Drawing S = Qs € gV
BenchStone = § 2 2
System.Security u>f &
Burgers
ByteMark ASP.NET NET SPEC CPU17
BilinearTest E |_
XmiDocumentTests Fig. 3: Fraction of kernel instructions in each benchmark.
MicroBenchmarks
System.Xml [
Mis ft . .
systemting C. Validating Subsets
PerfLabTests
System.ConsoleTests Once a subset is created, it is important to verify that it
B Eli is representative. Prior work [34] used the score in SPEC
rapeslng to verify their selected subsets. The score of machine A
ayoul
System. MathBenchmarks is defined as execution tzlme on the baselln_e machzne. A smgle
SciMark2 X execution time on machzne.A
SIMD composite score can be computed by taking the geomean
- of the scores of the included benchmarks. We create similar
System.Hashing]_"— scores for the .NET and ASP.NET suites using the Intel Xeon
SeekUnroll
System.Diagnostics ————————— machine in Table II as our baseline, and the Intel Core machine
Cachench —————— : - - : - as the machine A
0.0 25 5.0 75 10.0 12.5 15.0 175 20.0 :

Linkage Distance

Fig. 1: Similarity between benchmarks in .NET suite. The
subset we picked is underlined, and listed in Table IV.

1.6
14
1.2

1
0.8
0.6
0.4
0.2

0

M score (entire suite) & score (subset)

Subset B

Subset A (o)

Subset A

Out of 44 categories Out of 2906 workloads

Fig. 2: Validation of .NET representative subset.

For the .NET benchmarks an 8-category representative
subset, containing 305 workloads, is generated out of the
44 categories. We also generated a 64-element representative
subset out of the 2,906 workloads. The same methodology
is applied to the ASP.NET suite to obtain an 8-element
representative subset. We also created an 8-element subset of
the SPEC CPU17 suite. The representative subsets for the three
benchmark suites are listed in Table IV.

Figure 2 shows the validation results. We compute the
composite score for the entire benchmark suite and compare
with a composite score of only the reduced subset. The
accuracy of Subset A (containing 8 out of 44 categories) and
Subset B (containing 64 out of 2906 workloads) are 98.7% and
96.3% respectively. The Subset A(o) represents the “optimum”
score of the 8-category subset, 99.9%. This is obtained by
iterating over all possible combinations, and hence the higher
accuracy. Subset A is more accurate than Subset B since it
covers 8 categories containing 305 workloads as opposed to
64 individual workloads. We use Subset A in this study.

V. COMPARISON BETWEEN BENCHMARK SUITES

We use basic hardware counters and PRCOs to gain a better
understanding of the coverage of the .NET, ASPNET and
SPEC CPU17 benchmarks and the differences between them.

A. Instruction Footprint

Both .NET and ASP.NET have a significant kernel con-
tribution as compared to SPEC CPU17, shown in Figure
3. While the CLR is responsible for some of the kernel
instructions, ASP.NET shows a much larger percentage of
kernel instructions executed. We analyzed the performance

TABLE IV: Representative subsets of the benchmark suites.

.NET | ASP.NET | SPEC CPU17
System.Runtime Basic scalar and array tests. DbFortunesRaw Renders sorted DB query results to HTML. mcf
System.Threading Thread kernel functions. MyvcDbFortunesRaw Renders DB queries to HTML, MVC backend. | cactuBSSN
System.ComponentModel Type converters. MvcDbMultiUpdateRaw Serializes multiple DB queries as JSON objects. | wrf
System.Linq Language integrated query tests. | Plaintext Returns plaintext strings from pipelined queries. | gcc
System.Net Network kernel functions. Json Serializes a simple JSON document. omenetpp
System.MathBenchmarks Math libraries. CopyToAsync Reads POST query, returns plaintext result. perlbench
System.Diagnostics Kernel functions. MvcJsonNetOutput2M Sends 2MB JSON document, MVC backend. xalancbmk
CscBench Compiler and dataflow tests. MvcJsonNetInput2M Receives 2MB JSON document, MVC backend. | bwaves
W Branches I Loads D Stores O Others X ASP DbFortunesRaw X ASP MvcDbFortunesRaw ASP Json X ASP Mvclson
100 AsP ASP MvclsonOutput2M X ASP MvcDbMultiUpdateRaw X ASP CopyToAsync
90 ® SPEC perlbench ® SPEC gec ® SPEC mcf SPEC omnetpp
80 ® SPEC xalancbmk SPEC bwaves SPEC cactuBSSN SPEC wrf
70 ~ 2 . ~ 4 x
60 — £ €3
50 — §1 L. s
40 o a2
£ £
gg So S1 < .
10 Z % Zo .
p = 24 x £ ¥
- = » « « s 51 .
§353¢c2333egsceLEgegeaesgy ¢ < & R
£EeSs e 5508883 g0 2 8 3 4 2 -2 .
5 g gégagéésgéggﬁg E,_%Eg 2 1 0 1 2 3 a4 4 3 210 1 2 3 45
e £ ez & 2 s £ g 2k § -'5“ ﬁ Ola ° [}] Principal Component 1 Principal Component 1
£ 23£EE237E2¢°
3 T 832383t % Eg (a) Control flow behavior. (b) Memory behavior.
2 2 S 8 o n = >
] = = gV . .
2 g2 § g Fig. 6: Comparison between ASPNET and SPEC CPU17.
2 m; 2
ASP.NET NET SPEC CPU17 ual program characteristics, e.g., data structure initialization

Fig. 4: Percentage of instructions types in each benchmark.

X .NET System.Runtime
.NET System.
@ SPEC perlbench
© SPEC xalanchmk
2

X .NET System.ComponentModel
.NET System.Di i

@ SPEC gee
SPEC bwaves

.NET System.Net
X .NET System.Ling
® SPEC mcf
SPEC cactuBSSN
4

X .NET System.Threading
% .NET CscBench

SPEC omnetpp

SPEC wrf

2 . 2
1 €3
5. g
c . o
g_ . a2 X
£ £
80 % © 1 %
K e S
- x 20 .
g1 £ N
E . E'l .
-2 2
-1 0 1 2 3 4 -2 -1 0 1 2 3 4 5

Principal Component 1 Principal Component 1

(a) Control flow behavior. (b) Memory behavior.

Fig. 5: Comparison between .NET and SPEC CPU17.

counter samples in our data and found that this is primarily
due to the code in the networking stack. Therefore for study-
ing such benchmarks, full system simulations are needed to
model kernel behavior and the impact of the networking stack
(including the networking hardware) on performance.

B. Instruction Mix

Figure 4 shows the breakdown of instructions in each bench-
mark. The ASP.NET and .NET benchmarks do not show much
variety in the percentage of branches, loads and stores due to
fairly simple user code and the common runtime among all
the applications. SPEC programs are more diverse: xalancbmk
has a higher proportion of branches, but the FP programs
(bwaves, cactuBSSN, wrf) have much smaller proportion.
SPEC programs have slightly more loads, with geomean (GM)
of 35.2% vs ~29% in ASP.NET and .NET, but fewer stores
(GM of 11.5% vs ~16% in ASP.NET and .NET). Individ-

in System.Diagnostics, and GC operations contribute to the
higher stores in ASP.NET and .NET programs.

C. Using Principle Components for Comparison

The top four PRCOs obtained in §IV-A show that control
flow behavior (Metrics 2, 7 in Table I) and memory behavior
(Metrics 8-14 in Table I) contribute the most loading factors.
Given this, we use PCA again on control flow and memory
related metrics separately. This gives us two sets of PRCOs,
out of which we pick the top two from each set. This allows
us to plot all the benchmarks on two graphs and compare their
control flow and memory behavior, shown in Figures 5 and 6
respectively. Since only two metrics contribute to control flow
behavior, the loading factors of both metrics is the same for
the two PRCOs. For memory behavior, PRCO1 is dominated
by LLC misses and D-TLB misses and PRCO2 is dominated
by I-cache misses and I-TLB misses.

The two figures show that the .NET, ASP.NET and SPEC
CPU17 benchmarks exhibit different architectural behavior
since the data points corresponding to their performance
characteristics do not coincide. The .NET and ASP.NET
benchmarks differ significantly from SPEC CPU17 in both
control flow and memory behavior to merit consideration in
architecture research which is often dominated by SPEC. The
standard variation of SPEC CPU17 programs is 5.73x and
4.73x that of the .NET and ASP.NET respectively for control
flow behavior, and 1.71x and 1.27 x respectively for memory
related metrics. This indicates that SPEC CPU17 includes a
wider variety of benchmarks.

We see that the control flow behavior for ASPNET and
.NET applications is similar, which can be attributed to the
large share of CLR code in both. This also explains the

3 5
~ N ~ ~
€ €4 ¢ €
g 2]]
c < c
o o3]
g’ : £ £
S X% x x 5 2 S
o0 o o
3 g! i
2.1 . 2 N 2
£ 20 ® ‘ £
a2 a-1 IS

X %
-3 -2

S

-1 0 1
Principal Component 1

2

G

2 -1 0 1 2

Principal Component 1

3 4

(a) Control flow behavior. (b) Memory behavior.

N B O R N W A

X x64 System.Runtime X x64 System.ComponentModel

x64 System.Net X x64 System.Threading

x64 System.MathBenchmarks x64 System.Diagnostics

x

X x64 System.Ling X x64 CscBench
© ARM System.Runtime © ARM System.ComponentModel
* ARM System.Net ARM System.Threading

ARM System.MathBenchmarks « ARM System.Diagnostics

ARM System.Linq ARM CscBench

x)(

)

-1 0 1 2
Principal Component 1

3 4

(c) Runtime behavior.

Fig. 7: Comparison between x86-64 and AArch64.

lower variance between .NET and ASP.NET applications. In
traditional C/C++ workloads, memory management and the
nature of the compiled code are highly source code dependent
which leads to greater diversity in architectural behavior. It is
worth noting that this generally makes blanket compiler-level
optimizations more beneficial in managed languages.

D. Comparison between x86-64 and Arm

Since Arm server processors are more recent entrants, they
are not as mature as Intel processors. Nonetheless, we briefly
compare performance of .NET microbenchmarks on the two
architectures to identify possible areas Arm processors could
focus on for improvement. As before, we compare control
flow (Metrics 2, 7) and memory behavior (Metrics 8-14). We
also compare performance of runtime management (Metrics
19-23).

Figure 7 shows the comparison between x86-64 and Arm
platforms. For control flow behavior, the PRCO loading factors
are the same since only 2 metrics are included. The standard
deviation among benchmarks on the Arm platform is 1.36x
that of the x86-64 platform for PRCOI1, and 1.20x for PRCO2.
For the memory behavior, PRCOI is dominated by L1, L2
Cache misses and I-TLB misses, and PRCO?2 is dominated by
LLC misses and D-TLB misses. The standard deviation among
benchmarks on the Arm platform is 1.19x that of the x86_64
platform for PRCOI, and 2.32x for PRCO2. We also use
PCA for runtime events. PRCOI1 is dominated by GC and JIT
events, and PRCO2 by exception and contention events. The
standard deviation among benchmarks on the Arm platform
is 1.02x of the x86-64 platform for PRCO1, while it is for
0.58x for PRCO2.

In summary, the x86-64 platform shows more variance
among benchmarks on exception and contention events, while
Arm shows much more variance on LLC misses and D-TLB
misses. Comparing raw performance of the x86-64 and Arm
machines reveals that Arm does 80x worse on I-TLB MPKI
and 8x worse on LLC-MPKI. Such a large disparity cannot
be only due to microarchitecture differences. Differences in
the software stack also contribute to this. The Intel stack,
including the runtime and the compiler, have undergone years
of cross-stack optimizations, unlike Arm. We have highlighted
the variance within the workloads and the differences in
the performance profiles of the .NET applications on the
two architectures in this work. Teasing out more differences
requires further cross-stack analysis.

E. Performance Counters

Figure 8 plots some basic characteristics of the three bench-
mark suites on x86-64. Data from performance counters shows
that in general, the instruction memory interface performs
poorly on ASPNET and .NET, with higher I-TLB and LI
I-cache MPKIs as compared to SPEC. Although SPEC shows
diverse branch MPKIs because the underlying programs are
more complex, ASP.NET programs have slightly higher branch
MPKTs than several SPEC programs. ASP.NET programs also
have significantly higher CPI than SPEC due to larger total
frontend and backend stalls (see §VI). ASP.NET programs are
more realistic than the .NET microbenchmarks in general, and
hence show comparatively higher MPKIs and CPI. Nonethe-
less, System.Net, System.Threading, System.Diagnostics, and
CscBench are also realistic and exhibit behavior similar to
ASPNET. These performance artefacts in ASPNET and .NET
arise from their large CLR code footprint and JIT events. After
JITing, code pages are given new addresses, leading to branch
predictor cold starts and I-cache/I-TLB/branch misses.

Additionally, compared to SPEC, ASP.NET programs have
lower L1 D-cache MPKI, with GM of 15.9 vs 29 for SPEC,
larger L2 MPKI (GM of 20.4 vs 11 for SPEC), but lower
LLC MPKI (GM of 0.16 vs 098 for SPEC). The .NET
microbenchmarks have much lower MPKIs (GM of 2.3, 2.2,
and 0.01, respectively). We study the impact of these cache
and branch MPKIs in the following sections.

VI. TOP-DOWN ANALYSIS

Top-Down characterization is a hierarchical organization of
event-based metrics that identifies the dominant performance
bottlenecks in an application [42]. Its aim is to show, on
average, how well the CPU’s pipeline is being utilized while
running an application.

Top-Down divides the processor pipeline into slots which
can either be filled with instructions or are empty. Empty slots
can be attributed to various bottlenecks within the pipeline.
The ratio of empty slots with respect to the total number of
available slots is calculated, which determines how much each
bottleneck affects processor performance.

We use the Top-Down methodology in addition to exam-
ining raw metrics such as cache MPKI values as we want
to measure their impact on actual processor performance. For
example, a D-cache miss typically only decreases performance
when it results in a full window stall in the reorder buffer. Only
looking at the D-cache MPKI provides an incomplete picture

0.8

iTLB-MPKI
0.6
0.4
0.2
0
100 "
L1-icache-MPKI
80
60
40
20
0
25
Branch-MPKI
20
15
10
5
0
6
5 CPI
a4
3
2
. sillanns
0
— Lol
£355:335(pToreLEEEeTaiegs
x2S a0 8835 5[S E <5 0
ES-52% % 5|E cERESZ IS8 23 %a
‘s @ a Q & o = o e £ Al e 35
25 sRsS8eE|2E8E52e @3 Eso g
“2 Sz£BE|erirsfec|E °g 8
S £ 06225 a4
[ZUI.I.::-HQ_ W-CE
2 T 223 9|8 g 280
8 & Bs5%agsg 22%
© > o S o m§.>-
s} §Q> = gV
> S 2 £ H
s s 8 g
= 1 2
a a
ASP.NET NET SPEC CPU17

Fig. 8: Performance counter comparisons on x86-64.

of its impact on performance. Top-Down uses performance
counters available on Intel processors that measure empty
pipeline slots and stall cycles at various pipeline structures,
thus giving us a better picture of the impact of such raw
metrics on performance.

We use foplev, which is part of the pmu-tools repository
[15], for parsing performance counter values and obtaining
a detailed Top-Down profile for each benchmark. The tools
outline various bottlenecks; we explain what each metric
represents in the following discussion.

A. Basic Top-Down Analysis

The observations from the basic breakdown in Figure 9 can

be summarized as follows:

o ASP.NET is significantly backend bound, more so than
the other benchmarks. This is in line with the perception
that datacenter applications tend to be backend bound.

o Neither .NET nor ASPNET have a significant bad-
speculation component which is caused due to
mispredictions-related pipeline flushes. The SPEC

B Frontend_Bound

100
90
80
70 L
60
50
40
30
20
10
0
‘€t
H

[Bad_Speculation @ Backend_Bound [Retiring

o < = v @ Qo % x o
25 g2 3:S|pT s pPLLEEELE Rtz
o N > N £ 2 = S S5 c| € W g o > 3
x 4 2 7 Sl 0 €T 8 ©h 355 2 8 3 2
i 2iB2EES:TEEE4s £E23
c sl B8 28 8 ES5 Ha BT E s 2 &
- 2 3 > 2 2T g 2 e84 ol S w]
£ 9::...-05:5.m°>. < S
o 2 O 0 =2 Z2|ao © £ a - &
w 2 V% 2 c £ o o £ €
S s 35 5|9 s s 5
2 s o 2 8|7 E 2 &8 2
2 e 2 3|” ¢ >s &
4 2 o S o V’.&
3]
> 233 £ 5
= 2 g 2
= | ES
a wv
ASP.NET .NET SPEC CPU17

Fig. 9: Basic Top-Down profile for all benchmarks. Bars show
the percentage of pipeline slots allocated to each bottleneck,
broadly divided into the categories in the legend. Retiring

indicates no bottlenecks.
70

Frontend Bound B FE_Bandwidth.DSB

60 B FE_Bandwidth.MITE

50 [FE_Latency.MS_Switches
40 I FE_Latency.LCP

30 [FE_Latency.DSB_Switches
20 [FE_Latency.Branch_Resteers
10 @ FE_Latency.ITLB_Misses

I FE_Latency.ICache_Misses

0
80

B CR_Bound.Ports_Utilization

Backend Bound

70
B CR_Bound.Divider
60

50 E MEM_Bound.Store_Bound

40 @ MEM_Bound.DRAM_Bound

30 O MEM_Bound.L3_Bound

20 @ MEM_Bound.L2_Bound

10 E MEM_Bound.L1_Bound

0

gec [T TR

L]
omnetpp [T [T
xalancbmi [T I

wr [T

Json

MvcisonNetOutput2M
bwaves

CscBench [T [N
cactuBssN [T I

perlbench [T TN

Plaintext

DbFortunesRaw

System.Net |I0] [N
System.Threading [T [
System.MathBenchmarks [N

System.Ling I/

CopyToAsync
MvcDbFortunesRaw
MvcDbMultiUpdateRaw

System.Runtime [T N
System.ComponentMode! [N

System.Diagnostics

MvclsonNetinput2v [T [T

ASP.NET

z
m
jut}

SPEC CPU17

Fig. 10: Breakdown of empty pipeline slots in the Frontend and
Backend. Bars show the distribution of empty slots attributed
to the bottlenecks listed in the legend. FE = Frontend, CR =
Core, MEM = Memory.

suite has a wider spread of branch frequency, branch
MPKIs, and control flow complexity, and hence have
a broader spread of related stalls than ASP.NET and
.NET programs. In contrast to SPEC, kernel and the JIT
compiler also contribute significantly to the branches in
ASPNET and .NET apart from the user code.

o Some .NET and ASP.NET applications have a significant
frontend bound component which we explore in detail in
the next section.

B. In-depth Analysis of Pipeline Bottlenecks

1) Frontend Bound: Figure 10 (top) shows a detailed break-
down of percentage of empty pipeline slots in the frontend.
Note that percentages of less than 5% can be inaccurate due to

® Frontend_Bound @ Bad_Speculation @ Backend_Bound O Retiring

80 HH o u i o

20 = e HE d

" [Tialesd dzllsze

olldatg
Plaintext MvcDb MvcDb
Fortunes |MultiUpdate|

Raw Raw 2m

olllsh | dzllste | ualelac | faplalots

Db Json Mvclson CopyTo
Fortunes NetOutput Async
Raw 2m

olllsie

Mvclson

Fig. 11: Top-Down profile for ASP.NET applications running
onl, 2, 4,8, 16 cores.

measurement errors as stated by the tool. A significant fraction
of the these come from DSB (Decode Stream Buffer) and
MITE (legacy decoder) bandwidth. This is primarily attributed
to less than peak fetch bandwidth from either the DSB due to
structural constraints, or the standard pipeline due to lack of
enough decoders. Another major reason for lost pipeline slots
in both categories is packet breaks: the inability of the frontend
to process multiple instructions of a certain kind in a single
cycle. For example, packet breaks due to more than one taken
branch prevent the frontend from filling all the fetch slots.

The frontend latency-bound metrics cover pipeline slots
that are empty due to frontend stalls. The main sources of
these stalls are BTB misses (branch re-steers), I-TLB misses,
and I-cache misses. All three are large for most .NET and
ASP.NET benchmarks, due to the large code base associated
with these applications and frequent JIT events. While the I-
cache MPKI in these benchmarks is high, a lot of the stalls
due to them are hidden by backend stalls (e.g., due to memory
accesses) which reduces their impact on performance. High
(Microcode sequencer) MS-switches indicates a large number
of microcoded instructions that result in empty pipeline slots
since it takes multiple cycles to access the microcode ROM.
These are likely due to the CLR code since they are consistent
across most ASPNET and .NET benchmarks.

2) Backend Bound: Figure 10 (bottom) shows a detailed
breakdown of empty pipeline slots in the backend. The most
interesting observation here is that the ASPNET programs are
L3 bound, which is the Last Level Cache (LLC) in the system.
This means that a large fraction of empty slots in the pipeline
are due to LLC misses. However, we observed that the per-core
LLC-MPKI for the ASPNET benchmarks is actually lower
compared to the rest. This indicates that the stalls associated
with the LLC are likely because of increased access latencies.
To investigate this further, we studied how the bottlenecks in
ASP.NET scale with core count.

Figure 11 shows that as the number of cores increases, most
benchmarks are more backend bound. Upon further analysis,
we found that this is primarily due to an increase in L3-bound
stalls, as shown in Figure 12, while the per-core LLC-MPKI
remains relatively stable. This supports our earlier claim that
ASP.NET benchmarks see increased LLC access latencies.
Since the access latency increases as the application scales,
this can be attributed to contention at the ports of individual

m#Cores=1 @ #Cores = 2 O#Cores=4 MW#Cores=8 [M#Cores=16

Plaintext Db Json Mvclson CopyTo MvcDb MvcDb Mvclson
Fortunes NetOutput Async Fortunes MultiUpdate Netinput
Raw 2m Raw Raw 2m

Fig. 12: Percentage of L3-Bound stalls for ASPNET applica-
tions running on 1, 2, 4, 8, 16 cores.

LLC slices. ASP.NET runs on a large number of cores and
therefore ends up generating a significant amount of on-chip
traffic. Thus the increased LLC latency could also be a result
of contention in the Network-on-Chip (NoC).

One other interesting observation is that a significant per-
centage of empty slots are due to D-cache latency ("4 cycles
for modern L1 D-caches) in ASP.NET and select .NET bench-
marks. This indicates there are a large number of simultaneous
requests to the D-cache that are hits which saturate the D-
cache bandwidth in these applications. SPEC CPU17 is more
DRAM bound. Since the .NET and ASP.NET applications do
not have a large working set (all under S00MiB), they do not
exercise memory as much as SPEC CPU17, which can have
large working sets (up to 16GB for some applications).

Port utilization (Figure 10, bottom) represents the percent-
age of empty pipeline slots due to micro-ops not being issued
to execution ports at peak bandwidth when micro-ops are
present in the reservation stations. This therefore includes
stalls due to lack of intrinsic Instruction Level Parallelism
(ILP) within the program, which are not caused by microarchi-
tecture constraints but are captured in this metric. Applications
that use the core divider extensively have a small percentage
of empty slots allocated to them since the divider functional
unit is normally non-pipelined and takes multiple cycles.

VII. ANALYSING THE MANAGED RUNTIME

To gain insights into how the managed runtime affects ap-
plication performance, we collected traces for several runtime
events using LTTng [5] for the ASP.NET benchmarks. Since
most of the .NET microbenchmarks were extremely short,
obtaining useful traces for them was difficult. Hence we only
performed basic GC studies on these benchmarks.

A. Correlation of Hardware Performance Counters with Run-
time Events for ASPNET

The runtime event traces for ASPNET were collected in
the form of samples over the period of execution of each
benchmark along with corresponding samples for performance
counters. Each sample was associated with a timestamp with a
sampling interval of 1 millisecond. We then calculated the cor-
relation coefficient (Pearson’s correlation) between the runtime
event samples and performance counters. Figures 13a and 13b
summarize some of the data for the ASPNET benchmarks.
The correlation coefficient by itself does not indicate whether
runtime events cause the change in the performance counters.

06 04 02 o o2 [o4

Branch | DTLB ITLB (51} LD LLC
Retired | MPKI MPKI MPKI MPKI MPKI MPKI

Benchmarks IPC

Plaintext
DbFortunesRaw

Json
MvclsonNetOutput2M
CopyToAsync
MvcDbFortunesRaw
MvcDbMultiUpdateRaw

(a) JIT-start events.

BTB Branch | DTLB ITLB L LD LLC
MPKI MPKI MPKI MPKI MPKI MPKI MPKI

Useless
prefetch

Insts-
Retired

Page

Benchmarks IPC
Faults

Plaintext

DbFortunesRaw

Json

MvclsonNetOutput2M
CopyToAsync
MvcDbFortunesRaw
MvcDbMultiUpdateRaw

(b) GC invocations.

Fig. 13: Correlation of JIT-start events and GC invocations in
ASPNET with a few performance counter values.

We manually examined the sample timestamps and confirmed
that changes in the performance counter values were observed
after changes in the JIT and GC event samples. The delay
between the runtime events and the change in performance
counters ranged from 10 microseconds to 5 milliseconds and
was consistent across multiple runs. We therefore surmise that
the observed runtime events were primarily responsible for the
changes in the performance counters .

For the JIT correlation studies, we increased the heap size to
maximum. This was done to reduce GC events in the program
and hence their effect on the performance counters. Likewise,
for the GC studies we used a small heap size to increase the
number of GC events in the program and highlight their effect
on the performance counters.

1) JIT events: The positive correlation coefficients ob-
served between JIT-start events and branch MPKI, LLC-MPKI
and page faults indicate that JIT events cause an increase,
5%-20%, in these metrics. We also observed a minor increase
(~5%) in the L1 I-cache MPKI. These can be attributed to
cold starts. After JIT compilation, code pages are assigned
new addresses. These new pages always miss in caches as
traditional prefetchers do not issue requests beyond the page
boundary, causing an increase in cache MPKI and page faults.
(ASPNET has ~300x as many page faults as SPEC.)

Note that we also see a negative correlation with respect
to the number of useless prefetches which indicates that data
within the JITed pages is actually prefetchable. However the
large increase in LLC MPKI suggests that the prefetches are
not aggressive enough.

Branch MPKI is also affected by cold starts. The branch
predictor state is stored in tables indexed by the program
counter (PC). Since JITing a code page changes the branch
addresses, the predictor state is lost even if the control flow
behavior of those branches is unchanged. This results in a low
prediction accuracy immediately after a code page is JITed
as additional time is needed to retrain the branch predictor.
This effect is not limited to branch predictors as a number
of micro-architecture structures use PC-indexed meta-data to

improve performance. While the effect on branch prediction
was prominent for ASP.NET, larger real-world applications
may exhibit similar issues with other structures such as PC-
based prefetchers.

While the runtime JIT compiler contributes to some of
the above misses when invoked, the sampled performance
counters indicate that a large proportion of the increase in the
performance counter values was due to the generated JITed
code pages.

We find that JIT compilation has many trade-offs associated
with the micro-architecture. It is challenging to solve the above
problems only in the runtime or the compiler as this would re-
quire detailed knowledge of the underlying micro-architecture.
Further, additional code added to the software without ISA
changes can also increase code size, further exacerbating the
problem. Cross-stack solutions that involve hardware changes
are therefore important to address these issues. For example,
hooks in the ISA can be used by software to provide meta-
data regarding JITed code pages to the hardware. This can help
improve prefetching for these pages. The meta-data can also
be used to either preserve or transform the microarchitectural
state of the machine (such as branch predictor tables) related
to these pages to reduce the effect of cold starts.

2) Garbage Collection events: Figure 13b shows that GC
events improve LLC MPKI, perhaps counter-intuitively. This
is likely due to better locality in caches after dead objects are
removed and data is rearranged (heap compaction). While GC
events also results in a large amount of data movement, the
benefits of rearranging data surprisingly leads to an overall
decrease in the LLC MPKI (of ~8%). We see an increase
in instruction footprint due to GC events - an overhead that
is already well explored, but the overall performance (IPC)
is positively correlated with GC events. Since the ASPNET
programs we use do not have very large working sets (all
under 500MiB), the GC is not invoked often. The benefits of
rearranging data in the caches out-weights the overhead of the
additional code executed, and hence we see that [PC improves
after GC events. While GC overheads may be larger in real-
world applications with big working sets, rearrangement of
data in caches after GC events still improves cache locality.

Hardware acceleration of GC is therefore useful not only
because it helps alleviate the potentially large overheads of
GC (as shown in prior work [31], [33]) but also because
it can improve cache performance. In fact, even limited GC
acceleration in hardware can potentially reap the benefits of
greater locality as it does not incur the overhead of frequent
GC events as compared to previously proposed software-only
solutions [23], [24].

This provides an interesting insight into memory manage-
ment which is currently performed exclusively in software.
The hardware has detailed information about the cache hierar-
chy: cache sizes, replacement policies etc. If a part of the mem-
ory management (GC in managed languages) is offloaded to
the hardware, it can potentially improve performance through
aggressive dead block elimination and better mapping of data
to cache blocks. While this idea is applicable to all programs

W workstation_gc_200MiB
server_gc_200MiB

GC/Triggered

W workstation_gc_2000MiB B workstation_gc_20000MiB
A server_gc_2000MiB @ server_gc_20000MiB

S NNNNNNNNNNNNNNNNNNNNNNN]
L LA NN NNNNNNNNNY
RN
[NNNNNNNNNNNNNNNNNNNNNNN
A ENAANNANNNNNNNNNNNNY

A ST TIIUNINUNRNNRRNNNY]

LLC MPKI

SRS
.
SN
NN
SN

Execution Time

[SSSSTIUUUUUNNNRRNNY
[INNNANNNNNNNNNNNNNY)
A SETTIIUTINNUIINNORNY

AN
[NNNNNNNNNNNNNNNNNNN
N RNNNNNNNNNNNNNNNNY
AN
[SSSRIUUUNUUUNNNARNY
ANNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNN]
[RANANNNNNNNNNNNNN]
[SSESTTINNUNNNNONNNY
(SRS ANIINANNANNY
[SSSRNNNANNNONNNNY
[SECTINUUNNUUNNNNNY

)

N
ANNNNNNNNNNY

&\\\\\\
A

Ml sSSSS—.
NN

s | ONNNNNNNNNNNNNNNNNNY
%
NN

Fig. 14: Comparison between different GCs. Data is normal-
ized to workstation_gc_200MiB.

include those without explicit garbage collection, managed
languages are prime candidates for such optimizations since
the meta-data and software interfaces required for offloading
memory management to the hardware are much more readily
available in these frameworks. For instance, the concept of
GC generations used by managed language to separate short-
lived and long-lived objects can be leveraged to place data
efficiently in the memory hierarchy.

B. GC Analysis for .NET Microbenchmarks

To understand the effect of GC on the .NET microbench-
marks, we used aggregate performance counter and runtime
event values. The .NET kernel provides two Garbage Collec-
tion mechanisms, workstation GC and server GC. Workstation
GC is designed for client apps. It runs as a user thread
and competes with applications running on the core for CPU
time. Server GC runs on multiple dedicated threads at high
priority and is more resource intensive. Server GC is designed
for datacenter applications that require high throughput and
scalability and has larger overheads [6].

In our experiments, we run the .NET microbenchmarks
with these two GCs and three different maximum heap sizes,
200MiB, 2,000MiB, and 20,000MiB to gain insights into
how GC aggressiveness affects the microarchitecture. Sys-
tem.Collections cannot be complied with workstation GC and
200MiB maximum heap size due to an OutOfMemory Ex-
ception. System.Text, System.Collections, and System.Tests,
cannot be compiled with server GC and 200MiB maximum
heap size as server GC requires a larger minimum memory
size for these applications.

GC/Triggered, LLC-MPKI and execution time are the three
metrics that are affected the most under different GC settings

10

and are shown in Figure 14. Since server GC is more ag-
gressive, the GC is triggered 6.18x more often than when
using workstation GC on an average. Server GC achieves
a 0.59x reduction in LLC-MPKI compared to workstation
GC. Applications running with server GC run 1.14x faster
than those using workstation GC indicating that the benefit
of reduced cache MPKI outweighs the overhead of executing
additional GC code for most of the benchmarks as they
do not have a large working set. Few workloads like Sys-
tem.MathBenchmarks which exhibit very little cache activity
perform worse with server GC due to the additional overhead.
These results are in line with those we observed for ASP.NET.

VIII. CONCLUSION

Through our analysis of NET benchmarks, we uncovered
many micro-architectural bottlenecks in these applications as
outlined in § VI, many of which have not been explored before
in the context of managed language workloads. We showed
that they are significantly different from the standard SPEC
CPU17 suite in frontend, backend and CPI behavior. Hence,
we argue that they should be included in architecture studies,
particularly when designing the new Arm server processors.

In §VII, we provided several interesting insights about
the impact of runtime events on the core micro-architecture.
They reveal key opportunities for performance optimization of
managed languages in hardware, some of which we summarize
below:

o Improving the performance of the networking stack to
speed up datacenter applications.

Better management of meta-data in frontend structures
such as the I-TLB, BTB and I-cache for applications with
large and diverse code footprints.

Data placement strategies in LLC slices to reduce con-
tention at the NoC.

Aggressive prefetching and software-driven hardware
transformations for structures in the microarchitecture to
make them more JIT-friendly.

Offloading a part of Garbage Collection to hardware for
improved cache performance while keeping the overhead
of memory management low.

A key theme in many of these opportunities is hardware
solutions that are assisted by meta-data provided by the
software. This can take the form of new instructions in the
ISA to manipulate already present hardware structures or
programming accelerators at runtime to perform specific tasks.
Managed runtimes already provide a large amount of meta-
data that can be leveraged to implement such hardware solu-
tions without needing to involve the programmer. The .NET
CLR, for instance, contains meta-data about live objects and
their references which can be communicated to the hardware.

Performance optimizations that span the stack are gaining
popularity as it is becoming increasingly difficult to improve
CPU performance only through technology improvements.
Managed language workloads are becoming increasingly im-
portant, especially in datacenters, and provide fertile ground
for cross-stack optimizations. Research in architecture and

microarchitecture optimization for managed languages is likely
to grow further in importance with growing popularity of
managed languages. Further studies of more diverse .NET
programs and full-system analysis are needed.

IX. ACKNOWLEDGMENT

We thank Andy Ayers, Sébastien Ros, David Levinthal,
Shyam Murthy, Tanvir Ahmed Khan, and anonymous review-
ers for insightful discussions and comments about the work.

[1]
[2]
[3]
[4]
[5]
[6]

[7]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

”Azure Cosmos DB documentation”. https://docs.microsoft.com/en-us/
azure/cosmos-db.

”Azure SQL Database documentation”. https://docs.microsoft.com/
en-us/azure/azure-sql/database/connect-query-dotnet-core.

”Bing.com runs on .NET Core 2.1!”. https://devblogs.microsoft.com/
dotnet/bing-com-runs-on-net-core-2-1.

“Linux perf tool.”. https://perf.wiki.kernel.org/index.php/Main_Page.
“"LTTng.”. (https:/lttng.org/).

”Microsoft .NET Garbage Collection Document”. https://docs.microsoft.
com/en-us/dotnet/standard/garbage- collection/rks.

" NET applications on Azure”. https://azure.microsoft.com/en-us/
develop/net.

”.NET Core 3.17. https://dotnet.microsoft.com/download/dotnet-core/3.
1.

”.NET Core is "Most Loved’ Framework in Stack Overflow Survey”.
https://visualstudiomagazine.com/articles/2019/04/09/so-survey.aspx.
”"Reason Why .Net Framework is the Most desirable Framework in
2020!”. https://tinyurl.com/y2ecyetx.

”SPEC CPU2017”. https://www.spec.org/cpu2017.

”SPECjvm2008”. https://spec.org/jvm2008/.
“State of the Developer Nation 19th Edition - Q3
2020”. https://www.developereconomics.com/resources/reports/

state-of-the-developer-nation-q3-20201.

”"TechEmpower Web Framework Benchmarks.”. (https://www.
techempower.com/benchmarks/).
“Toplev tool.”. (https://github.com/andikleen/pmu-tools/wiki/

toplev-manual).
”What are "SPECspeed” and ”SPECrate” metrics?”. https://www.spec.
org/cpu2017/Docs/overview.html#metrics.

"What is ASPNET?”. https://dotnet.microsoft.com/learn/aspnet/
what-is-aspnet.
"What is .NET?". https://dotnet.microsoft.com/learn/dotnet/

what-is-dotnet.
”NET Performance”.
c86ef708.

”ASPNET Benchmarks”. https://github.com/aspnet/Benchmarks, com-
mit fa417157.

C. Bienia, S. Kumar, J. P. Singh, and K. Li. "The PARSEC Benchmark
Suite: Characterization and Architectural Implications”. In 2008 Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 72-81, 2008.

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking,
Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanovi¢, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. “The DaCapo Benchmarks: Java Benchmarking Development
and Analysis”. In Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and
Applications, OOPSLA ’06, page 169-190, 2006.

Trishul M. Chilimbi and James R. Larus. ”Using Generational Garbage
Collection to Implement Cache-Conscious Data Placement”. In Pro-
ceedings of the Ist International Symposium on Memory Management,
ISMM °98, page 37-48, 1998.

Trishul M Chilimbi and James R Larus. “Data Structure Partitioning
with Garbage Collection to Optimize Cache Utilization”, November 20
2001. US Patent 6,321,240.

Andy Clark. ”Stack Overflow Migrate Architecture from .NET
Framework to .NET Core”. https://www.infoq.com/news/2020/04/
Stack-Overflow-New- Architecture/.

https://github.com/dotnet/performance, commit

11

[26]

[27]

[28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

Mathieu Desnoyers and Michel Dagenais. “The LTTng tracer: A
low impact performance and behavior monitor for GNU/Linux”. OLS
(Ottawa Linux Symposium), 01 2006.

Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. “Predict-
ing Inter-thread Cache Contention on a Chip Multi-processor Architec-
ture”. In /1th International Symposium on High-Performance Computer
Architecture, pages 340-351, 2005.

Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisaface, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. ”Clearing the Clouds:
A Study of Emerging Scale-out Workloads on Modern Hardware”.
In Proceedings of the Seventeenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS XVII, page 37-48, 2012.

Robert Gawlik and Thorsten Holz. ”SoK: Make JIT-Spray Great Again”.
In 12th USENIX Workshop on Olffensive Technologies (WOOT 18),
Baltimore, MD, August 2018. USENIX Association.

Aamer Jaleel, Eric Borch, Malini Bhandaru, Simon C Steely Jr, and
Joel Emer. ”Achieving Non-inclusive Cache Performance with Inclusive
Caches: Temporal Locality Aware (TLA) Cache Management Policies”.
In 2010 43rd Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 151-162. IEEE, 2010.

José A. Joao, Onur Mutlu, and Yale N. Patt. “Flexible Reference-
Counting-Based Hardware Acceleration for Garbage Collection”. In
Proceedings of the 36th Annual International Symposium on Computer
Architecture, ISCA 09, page 418-428, 20009.

A. Limaye and T. Adegbija. ”A Workload Characterization of the SPEC
CPU2017 Benchmark Suite”. In 2018 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 149—
158, 2018.

M. Maas, K. Asanovi¢, and J. Kubiatowicz. ”A Hardware Accelerator
for Tracing Garbage Collection”. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), pages 138—
151, 2018.

Reena Panda, Shuang Song, Joseph Dean, and Lizy K John. "Wait of a
Decade: Did SPEC CPU 2017 Broaden the Performance Horizon?”. In
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 271-282. IEEE, 2018.

Aashish Phansalkar, Ajay Joshi, and Lizy K John. “Analysis of
Redundancy and Application Balance in the SPEC CPU2006 Benchmark
Suite”. In Proceedings of the 34th annual international symposium on
Computer architecture, pages 412-423, 2007.

Aleksandar Prokopec, Andrea Rosa, David Leopoldseder, Gilles Du-
boscq, Petr Tma, Martin Studener, Lubomir Bulej, Yudi Zheng, Alex
Villazén, Doug Simon, et al. “Renaissance: Benchmarking Suite
for Parallel Applications on the JVM”. 1In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 31-47, 2019.

Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien
Breughe, Mark Charlebois, William Chou, et al. "MLPerf Inference
Benchmark”. In 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), pages 446—459. IEEE, 2020.
Mitsuhisa Sato. ”"The Supercomputer “Fugaku” and Arm-SVE Enabled
A64FX Processor for Energy-efficiency and Sustained Application Per-
formance”. In 2020 19th International Symposium on Parallel and
Distributed Computing (ISPDC), pages 1-5. IEEE, 2020.

Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder.
”"Da Capo Con Scala: Design and Analysis of a Scala Benchmark
Suite for the Java Virtual Machine”. In Proceedings of the 2011 ACM
International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’11, page 657-676, 2011.
Livio Soares and Michael Stumm. “FlexSC: Flexible System Call
Scheduling with Exception-Less System Calls”. In Proceedings of the
9th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’ 10, page 33-46, 2010.

Svante Wold, Kim Esbensen, and Paul Geladi. “Principal Component
Analysis”. Chemometrics and intelligent laboratory systems, 2(1-3):37—
52, 1987.

A. Yasin. ”A Top-Down Method for Performance Analysis and Counters
Architecture”. In 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 35-44, 2014.

