
Performance Implications of Async Memcpy and UVM:
A Tale of Two Data Transfer Modes

Ruihao Li1* Sanjana Yadav1 Qinzhe Wu1 Krishna Kavi2 Gayatri Mehta2
Neeraja J. Yadwadkar1, 3 Lizy K. John1

1The University of Texas at Austin
2University of North Texas

3VMware Research
*liruihao@utexas.edu

Abstract

Heterogeneous systems with CPU-GPUs have become
dominant parallel architectures in recent years. To optimize
memory management and data transfer between CPUs and
GPUs, unified virtual memory and asynchronous memory
copy were introduced in recent Nvidia GPUs. With such
architectural support, the entire processing flow can now be
pipelined into multiple stages, thereby efficiently overlapping
data transfer with computation.

In this paper, we provide a thorough performance analysis
of GPU asynchronous memory copy (Async Memcpy) and
unified virtual memory (UVM) on workloads covering multi-
ple domains. We especially study the joint effect of these two
architectural features, exploring which applications benefit
from one or both of these features. On a suite of 14 real-
world applications, we observe an average 21% performance
gain when using unified virtual memory only, and 23% gain
when using both of them. In irregular programs like kmeans
and lud, asynchronous memory copy provides around 20%
benefits over unified virtual memory. Furthermore, we dive
deep into the GPU kernel using performance counters to reveal
the root causes contributing to the performance variances.
We make sensitivity studies on how the number of blocks
and threads, and L1-cache/shared memory partition affect the
performance. We discuss future research directions to further
improve the data transfer pipeline.

1. Introduction

GPUs are widely used for machine learning (ML) and
big data workloads. Through their massive parallelism,
GPUs achieve improved throughput for such workloads.
Given the increase in data sizes, a significant amount of
work in the last decade has been dedicated to optimizing
GPU architectures to provide more computation capability.
For example, (i) tensor cores were introduced with Nvidia
V100 to fully utilize parallelism in ML workloads [21],
(ii) fine-grained structured sparsity was used in Nvidia
A100 to support sparse matrix multiplication [19]. However,
GPU systems need CPUs to act as central controllers for
distributing work and transferring data to the GPUs. As a

result, it is crucial to optimize CPUs and GPUs together as
a single heterogeneous system.

Recent works have focused on reducing performance
losses due to data transfer between CPU-GPU systems. For
some applications with large data sets, the memory-transfer
overhead is larger than 50× the GPU processing time [8].
Overlapping data transfer latency with computation is
one direction to eliminate memory copy overheads, which
has already been applied in different application domains,
including graph processing [28], ML [25], and database
systems [16]. Some approaches have proposed ways for the
CPUs and GPUs to concurrently access the same memory to
potentially reduce the amount of data transfer needed [11].
To amortize the data transfer overhead, recent Nvidia
GPUs introduced unified virtual memory and asynchronous
memory copy [19, 20] as two approaches for addressing the
memory transfer issue. In this work, we draw attention to
the fact that the performance implications of these different
optimizations depend of application characteristics and
might not be clear for users. We dive deep into UVM and
Async Memcpy, these two architectural features available
in recent Nvidia GPUs, and analyze and discuss their
performance implications for a range of workloads.

Nvidia Unified Virtual Memory (UVM) [20] makes the
memory address space shared across the CPU hosts and
GPU devices. Thus, in the UVM system, CPUs and GPUs
can access the same virtual memory space. UVM abstracts
away the data transfer from the user program. So, the
programmers do not need to call explicit data transfer
functions. With UVM support, GPUs initiate the data
transfer exactly at the time point when it needs the data for
computation, instead of moving all data before launching
the kernel. Therefore, CPUs are able to execute other jobs
when not processing the CPU-GPU data transfer. In addition
to UVM, Nvidia recently introduced a new architectural
feature, asynchronous memory copy (Async Memcpy), with
the Ampere architecture (CUDA 11) [19]. Async Memcpy
instructions can load data directly from global memory
into the streaming multiprocessor’s (SM) shared memory,
eliminating the need for an intermediate register file usage.
Async Memcpy reduces register file bandwidth, uses memory
bandwidth more efficiently, and reduces power consumption.

As the name implies, Async Memcpy can be done in the
background while the SM is performing other computations.

While there is a wealth of prior research on UVM [2,
3, 13, 35] and Async Memcpy [30], questions about the
performance implications of these mechanisms for a given
workload remain unanswered. UVM is explored deeply with
studies focusing on various aspects including analyzing
prefetchers and over-subscriptions, developing efficient
page fault handlers, and reducing data movement. Many
prior works have studied the sparse units and power
consumption of the Ampere architecture [4, 32], but very
few of them discussed Async Memcpy. Moreover, no prior
work has explored the intersection between UVM and
Async Memcpy. It is essential to analyze the performance of
these two hardware features since all kinds of architectural
enhancements come with overhead. The overall system
performance cannot benefit from them if the overhead
is not well handled. Async Memcpy complicates the data
transfer since additional GPU resources are required to
pipeline the global memory to shared memory transfer and
SM computation. In UVM, page faults can happen on the
GPU side when the accessed data is not in the page table,
which blocks the data transfer and downgrades the overall
system performance.

In addition, programmers need to make a choice when
writing their CUDA programs whether to write a UMA
version or a Async Memcpy version. There are no automatic
tools such as compilers available for converting programs to
UVM or Async Memcpy versions. Software developers need
to hand-tune the CUDA programs for better performance,
making a design guideline for these two architectural
features more desirable.

As UVM and Async Memcpy become available in modern
GPUs, more questions will arise: (a) What kind of workloads
benefit from using Async Memcpy? In other words, which
workloads are bottlenecked by the GPU global memory
to shared memory data transfer stage? Similarly, which
workloads benefit from using UVM, i.e., bottleneck on the
CPU DRAM to GPU global memory transfer? (b) What
are the performance implications for the choice between
Async Memcpy and UVM? Are these implications workload-
agnostic? How should programmers make these choices?
(c) Would the overall performance improve further if we
use both UVM and Async Memcpy? Can programmers make
the decision with limited profiling or intensive profiling?

To answer these questions, in this paper, we make a
deep analysis of how UVM and Async Memcpy affect the
performance of workloads on CPU-GPU heterogeneous
systems. To the best of our knowledge, we are the first
to consider the two architectural features together. The
following are the key contributions of our work.

• We explore the performance implications of CUDA
programming choices for data transfer (UVM and/or
Async Memcpy). We break down the execution time
into GPU kernel time, data transfer time, and data
allocation time on 21 workloads and use performance
counters to reveal the root cause of the performance
differences. We make sensitivity studies on the number

Global Memory

GPU

CPU DRAM

SMs
Shared Mem

SM 1

Threads

Shared Mem

SM n

Threads

… …

U
V

M
 P

ip
el

in
e

A
sy

n
c

M
em

cp
y

P
ip

el
in

e

U
2

U
1

A
2.1

A
2.2

A
2.2

Figure 1: CPU-GPU system data transfer pipeline. With UVM,
the pipeline contains U1 and U2 stages. Adding Async Memcpy
atop of UVM, stage U2 can be pipelined into A2.1 and A2.2.

of blocks and threads, and L1-Cache/shared memory
partition, to further understand the impact of UVM
and Async Memcpy.

• Our analysis on UVM and Async Memcpy can help
CUDA programmers understand these two hardware
features better and develop more efficient GPU codes.

• We create and make available a benchmark suite
for Async Memcpy and/or UVM studies, including 7
microbenchmarks and 14 real-workload applications,
which cover multiple domains. We implement the
Async Memcpy and/or UVM versions of each work-
load that weren’t available already. We believe that
releasing this benchmark publicly will enable further
research in this domain. Our code is available at
https://github.com/UT-LCA/UVMAsyncBench.

2. Background and Related Work
Figure 1 summarizes state-of-the-art CPU-GPU heteroge-

neous system memory architectures with UVM and Async
Memcpy. We describe details about UVM in Section 2.1
and Async Memcpy in Section 2.2 . We also discuss prior
performance characterization studies on UVM and Async
Memcpy in this section.

2.1. Unified Virtual Memory
UVM [20] is a powerful technology introduced in Nvidia

GPUs, which provides a single memory space and automates
memory management and data migration between the CPU
host and GPU device physical memory modules. In Figure 1,
for UVM, the CPU DRAM to GPU global memory data
transfer is marked U1 and the global memory to shared
memory data transfer during SM execution is marked U2.
An enhanced UVM version supports prefetch data from
global memory to L2 cache [2, 13], reducing the global
memory to shared memory time (U2).

UVM is designed to be transparent to the application,
making CUDA programming using UVM more concise and
understandable (See example in Figure 2). With a unified
virtual memory space, the CPU and GPU heap memory
management can be overlapped. Additionally, applications
can easily leverage the combined memory resources of
multiple GPUs to perform data-intensive computations, such

https://github.com/UT-LCA/UVMAsyncBench/

DataType *h_a, *d_a;
h_a = malloc(size);
cudaMalloc(&d_a, size);
cudaMemcpy(d_a, host_a, size, cudaMemcpyHostToDevice);
cudaKernel<<<...>>>(d_a);
cudaMemcpy(host_a, host_a, size, cudaMemcpyDeviceToHost);
cudaDeviceSynchronize();
print(h_a);

DataType *uvm_a;
cudaMallocManaged(&uvm_a, size);
cudaKernel<<<...>>>(uvm_a);
cudaDeviceSynchronize();
print(uvm_a);

Without UVM

With UVM

Figure 2: CUDA programming without/with UVM (Pseudo-code).
Coding with UVM simplifies programming.

as ML and high-performance computing. However, UVM
also brings performance overhead. GPUs require a copy
of the CPU virtual memory physical memory mapping if
a unified virtual memory space is used. GPU page faults
must be synchronized with CPUs as well.

The benefit and overhead of UVM have led to attention
from research communities, which can be divided into two
categories:

(1) Architecture Optimizations that focus on reduc-
ing the additional performance overhead by introducing
hardware enhancement. For example, prior works have
improved UVM system performance by batch processing
page faults [13], improving GPU cache utilization [14], and
dynamically managing variable-sized pages [15]. All these
architectural improvements can be used in next-generation
GPU designs.

(2) Characterization and Analysis that reveal bottle-
necks in current systems, guiding programmers to develop
more hardware-friendly applications and libraries. For
example, Zheng et al. [33] compared UVM and traditional
memory management methodology and found the possibil-
ity of using UVM with minimal overhead. Allen et al. [2, 3]
dived into the software and hardware-based root causes of
the internal behaviors of page fault generation and servicing.
Shao et al. [29] revealed the reasons behind the diverse
sensitivities to oversubscription among different workloads.

2.2. Asynchronous Memcpy
Pipelining computation and data transfer can boost

the CPU-GPU heterogeneous system performance. In the
last decade, efforts have been put into overlapping GPU
computation time with CPU DRAM-GPU global memory
data transfer time [8, 11]. This technique has already been
used in the UVM system, by enabling GPU-driven fine-
granularity transfer while freeing CPU cycles for other
jobs, instead of blocking the CPU to transfer the entire
chunk of allocated memory.

In addition to CPU DRAM-GPU global memory data
transfer, the GPU global memory to shared memory data
transfer latency can also be pipelined and optimized, as long

__shared__ DataType data[size];
for (; tile < end; tile++) {

memcpy(data[0:size-1], input[tile]);
compute on data[0:size-1];

}

__shared__ DataType data[size * 2];
for (compute = fetch; compute < end; compute++) {

for (; fetch < end && fetch < compute + 2; fetch++)
memcpy_async(data[0:size-1], input[fetch]);

compute on data[size:size*2-1];
}

Without Async Memcpy

With Async Memcpy

Figure 3: CUDA programming without/with Async Memcpy
(Pseudo-code). Async Memcpy necessitates careful programmer
intervention.

as the GPU hardware architecture supports it. Fortunately,
starting with Ampere architecture with CUDA 11, Nvidia
GPUs support this asynchronous copying of data from
global memory to shared memory. In Figure 1, for Async
Memcpy1, copying data from global memory to shared
memory is marked as A2.1, and fetching data from shared
memory during processing is marked A2.2. The Async
Memcpy allows the programmer to initiate a transfer of data
from global to shared memory, without blocking GPU thread
execution (code snippets shown in Figure 3). Additional
primitives are then provided which enable waiting for the
asynchronous memory operation to complete.

Though there are many works that studied the Ampere
architecture before, the majority of the works focused on the
sparse units [6, 7] and power efficiency [32], but not Async
Memcpy. A few prior studies on Async Memcpy can also be
divided into two categories: (1) Software Optimizations
that focus on enhancing compilers and system libraries
to make full use of the new Async Memcpy hardware
feature. For example, Async Memcpy has been used in
deep learning compilers recently to optimize the pipeline
of tensor programs [12, 31]. (2) Characterization and
Analysis that study the performance of Async Memcpy and
compare it against its predecessor architecture. For example,
Svedin et al. [30] compared A100 performance with four
previous generations of GPUs, and in their experiments on
A100, they observed up to 1.25× performance improvement
from Async Memcpy.

2.3. UVM vs Async Memcpy

As shown in Figure 1, Async Memcpy can be used
together with UVM. These two architectural features can
be used together and make the CPU-GPU heterogeneous
system data transfer into a 3-stage pipeline: (1) from CPU
DRAM to GPU global memory (U1), (2) from GPU global
memory to shared memory (A2.1), and (3) from shared
memory to each thread (A2.2).

1. In this paper Async Memcpy only refers to asynchronous copying of
data from global memory to shared memory.

TABLE 1: Hardware configurations used in the study.

Hardware Description

CPU

64× AMD EPYC 7742 @ 3.2GHz
4 MB L1-dcache, 4 MB L1-icache
64 MB L2-cache, 512 MB L3-cache

16× 64GB DDR4 @ 3200 MT/s

GPU Nvidia Tesla A100 @ 1410MHz
40GB HBM2 @ 1215 MHz

All pipelines come with overhead. The overall system
throughput can only be improved with an acceptable num-
ber of pipeline bubbles. Whether Async Memcpy together
with UVM is able to boost GPU system performance more
is worth exploring, considering the sophisticated 3-stage
data transfer pipeline.

3. Experimental Methodology

In this section, we first provide details of the experimen-
tal hardware and software setup. We then give an overview
of the 21 workloads in the benchmark suite we created.
Lastly, we discuss how to determine the configuration
of each workload since the performance can be affected
dramatically with different configurations.

3.1. Experimental Setup

3.1.1. Hardware. We conduct our characterization study
on an Nvidia A100 server with AMD CPUs. We list the
hardware configurations of the CPU-GPU heterogeneous
system in Table 1.

3.1.2. Software. We use Ubuntu 20.04 with Linux kernel
5.4.0 as the operating system. We use GCC 9.4.0 and CUDA
11.4 as the compilers for the heterogeneous system. For the
profiling tools, we use Linux perf [1] and Nvidia CUPTI [17]
for performance counter collections of CPUs and GPUs,
respectively.

3.1.3. UVM and Async Memcpy Configurations. We
use the following five architecture configurations in our
experiments:
(a) standard (Without UVM or Async Memcpy),
(b) async (using Async Memcpy only),
(c) uvm (using UVM only),
(d) uvm_prefetch (using UVM with prefetch), and
(e) uvm_prefetch_async (using UVM with prefetch and
Async Memcpy).

3.2. Overview of Benchmarks

We use 14 real-world applications and 7 microbench-
marks in our performance studies, and illustrate the two
groups of benchmarks in Table 2. These 21 workloads
cover the domain of linear algebra, physics simulation,
data mining, image processing, and machine learning. We
elaborate on these benchmarks in detail in this section.

3.2.1. Microbenchmarks. We use a set of microbench-
marks to gain a better understanding of the performance
of UVM and Async Memcpy. Each workload in the Mi-
crobenchmark suite uses one single CUDA kernel. The
vector_seq and vector_rand are workloads built atop of
benchmarks used in the prior study [30]. We use the
CUDA Pipeline API, since it showed better performance
than Arrive/Wait Barriers [30]. In addition to Vector-to-
Constant, we include 5 additional microbenchmarks from
Polybench [24]2. Vector-to-Vector (saxpy), Matrix-to-Vector
(gemv), and Matrix-to-Matrix (gemm) are considered as
extensions to the two Vector-to-Constant workloads, each
of which shares similar computation patterns but different
computation densities. 2D convolutions (2DCONV) and 3D
convolutions (3DCONV) are fundamental kernels of a large
number of computer vision and ML workloads, which have
been gaining increasing popularity in the last decade.

3.2.2. Real-world Applications. Our benchmark suite
includes the widely used Rodinia [5] benchmark suite, which
contains 29 applications covering domains of multimedia,
arithmetic, signal/image processing, biological computing,
and big data applications. Instead of using the entire Rodinia
suite, 8 diverse benchmarks are selected. We select lavaMD,
NW, Kmeans, Srad, Backprop, and Pathfinder based on
the representativeness of the 6 workloads. They were
classified into different groups based on prior performance
characterization studies [27]. We also include HostSpot
and LUD, since they were used in prior Async Memcpy
studies [30].

We use workloads bayesian and KNN from Uvm-
bench [9], which is a comprehensive benchmark suite for
UVM studies (other workloads in Uvmbench are overlapped
with Polybench and Rodinia). We implement the Async
Memcpy version of them as well.

We also study ML workloads since they are widely
used in CPU-GPU heterogeneous systems, especially in
the last decade. Instead of using the CNN and other ML
workloads in Uvmbench, we choose workloads (networks)
in darknet [26], since the scalability of darknet is better than
the Uvmbench implementation and is more widely used in
the ML community. In addition, darknet is implemented in
C rather than Python, making it easier for profiling-based
studies.

3.3. Benchmark Configurations
It is well known that the benchmark performance

depends on the chosen configuration. In this section, we
explore the input size search space and rationalize our
choice of input size.

We define six input sizes in Table 3, from 1MB to 32GB
memory footprint. We also list the reference size (assuming
float32 data type, the numbers are subject to change, e.g., if
there are 2 vectors, the size of each vector is 128K on the

2. We adjusted the Polybench codes to make them scalable for large
input sizes. We also compared the performance of our own implementation
with cutlass [18] to guarantee the efficacy of our kernel implementations.

TABLE 2: Benchmark programs.

Suites Source Program
Name Description Inputs

Micro

Svedin et al. [30] vector_seq Vector-to-Constant, element-wise arithmetic operations on vector (sequential
access) Vector (1D)

vector_rand Vector-to-Constant, element-wise arithmetic operations on vector (random
access) Vector (1D)

PolyBench [24]

saxpy Vector-to-Vector multiplication and addition Vector (1D)
gemv general Matrix-to-Vector multiplication Matrix (2D)
gemm general Matrix-to-Matrix multiplication Matrix (2D)

2DCONV general 2D convolution Grid (2D)
3DCONV general 3D convolution Grid (3D)

Apps

Rodinia [5]

LavaMD The code calculates particle potential and relocation due to mutual forces
between particles within a large 3D space. Box (3D)

NW Needleman-Wunsch, a nonlinear global optimization method for DNA
sequence alignments. Sequence (2D)

Kmeans K-means is a clustering algorithm used extensively in data-mining and
elsewhere, important primarily for its simplicity. Points (1D)

Srad Speckle Reducing Anisotropic Diffusion is a diffusion method for ultrasonic
and radar imaging applications based on partial differential equations (PDEs). Grid (2D)

Backprop Back Propagation is an ML algorithm that trains the weights of connecting
nodes on a layered neural network. Nodes (1D)

Pathfinder PathFinder uses dynamic programming to find a path on a 2-D grid. Grid (2D)

HotSpot A widely used tool to estimate processor temperature based on an
architectural floorplan and simulated power measurements. Grid (2D)

LUD LU Decomposition is an algorithm to calculate the solutions of a set of linear
equations. Grid (2D)

UVMBench [9] bayesian Bayesian network learning algorithm Nodes (1D)
KNN K-Nearest Neighbors Algorithm Points (1D)

Darknet [26]

Resnet18 Residual Network with 18 convolution layers ImageNet datasetResnet50 Residual Network with 50 convolution layers
Yolov3-tiny Yolov3-tiny COCO datasetYolov3 Yolov3

TABLE 3: Parameter configurations. Numbers are rounded up to
the lower bound for, e.g., Mem for Large is 512MB ∼ 4GB.

Tiny Small Medium Large Super Mega
Mem 1MB 8MB 64MB 512MB 4GB 32GB

1D Grid 256K 2M 16M 128M 1G 8G
2D Grid 5122 1K2 4K2 8K2 32K2 64K2

3D Grid 643 1283 2563 5123 1K3 2K3

Tiny input) of each input dimension, for 1D, 2D, and 3D
inputs. We need to use an input size that is large enough
to capture the performance difference between using UVM
and Async Memcpy. The input size also needs to be large
enough to make the execution time of the region of interest
long enough to amortize system overhead. However, an
extremely long execution program is not the best candidate
for performance studies. For a deep hardware profiling-
based analysis, it is easy to trigger more than 10× overhead
due to the limitation of profiling tools [34]. Therefore, the
input size should not be either too small or too large.

The majority of prior characterization works focused on
the GPU kernel execution time. Since we consider CPU-GPU
as one entire heterogeneous system, we use the sum of data
allocation time (cudaMalloc() or cudaMallocManaged() +
cudaFree()), the data transfer time (cudaMemcpy() or ex-
plicit unified memory data transfer time), and GPU kernel
execution time as the overall execution time.

We ran each workload 30 times and plotted the distri-
bution of each run. Figure 4 shows the overall execution
time distribution of the 7 workloads in the microbenchmark
suite on 6 different input sizes. We note that the confidence
interval becomes narrower when the input data size is
larger than Medium. This is aligned with our assumption
that with a constant system overhead, a larger input size
can amortize the noise in measurements. To have a better
panoramic view of the data, we also list the average (of
the 5 setups) standard deviation of the 30 runs over the
mean in Figure 5. Considering the geometric-mean of the
7 workloads, when the input size increased from Tiny to
Large, the overall execution time became more stable, which
is as expected.

However, the Mega input size shows more performance
variance than Large and Super, which is counter-intuitive.
We pick the most abnormal benchmark, vector_seq, and
visualize the breakdown of its execution time of the 30
runs in Figure 6. We see that the data allocation time and
GPU kernel time almost remain the same, but the data
transfer time between CPU and GPU varies a lot. The
reason is that the input size is close to the capacity of a
single DRAM chip (64GB in our evaluation platform). There
is a large chance that part of the data is stored in the other
DRAM chip, which adds more randomness to the overall

vector_seq
vector_randsaxpy gemv gemm

2DCONV
3DCONV

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

Ex
ec

ut
io

n
tim

e
(n

s)

1e8

standard
async
uvm
uvm_prefetch
uvm_prefetch_async

(a) Tiny.
vector_seq

vector_randsaxpy gemv gemm
2DCONV

3DCONV

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Ex
ec

ut
io

n
tim

e
(n

s)

1e8

(b) Small.
vector_seq

vector_randsaxpy gemv gemm
2DCONV

3DCONV

2.0

2.5

3.0

3.5

4.0

Ex
ec

ut
io

n
tim

e
(n

s)

1e8

(c) Medium.

vector_seq
vector_randsaxpy gemv gemm

2DCONV
3DCONV

0

2

4

6

8

Ex
ec

ut
io

n
tim

e
(n

s)

1e8

(d) Large.
vector_seq

vector_randsaxpy gemv gemm
2DCONV

3DCONV
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Ex

ec
ut

io
n

tim
e

(n
s)

1e9

(e) Super.
vector_seq

vector_randsaxpy gemv gemm
2DCONV

3DCONV

0.5

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n
tim

e
(n

s)

1e10

(f) Mega.

Figure 4: Execution time (distribution of 30 runs) on microbenchmarks with different input sizes. Large and Super are the most stable.

vector_seq
vector_rand saxpy gemv

2DCONV
3DCONV gemm

Geo-mean
0.00

0.05

0.10

0.15

0.20

st
d

/ m
ea

n

tiny
small

medium
large

super
mega

Figure 5: Standard deviation (over mean) of 30 runs on different
input sizes. Large and Super are the smallest.

system performance. As a result, we choose to use Large
and Super input sizes for the rest of our experiments.
Takeaway 1: Big input sizes are typically used for bench-
marking to avoid noisy measurements. However, our anal-
ysis suggests that big input sizes do not always guarantee
stable performance in CPU-GPU heterogeneous systems.
Instead, for generalizable benchmarking results in GPUs,
input sizes should be chosen considering the memory
capacity.

4. Results

In this section, we make a side-by-side comparison
between the five setups for all benchmarks, by breaking
down the overall execution time into GPU kernel, CPU-
GPU data transfer, and data allocation time. We dive deep
into workloads with unexpected behaviors by measuring
GPU performance counters. We summarize our insights
on the results and provide key takeaways for both GPU
programmers and computer architects.

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829
0.0
0.5
1.0
1.5
2.0
2.5

Ex
ec

ut
io

n
Ti

m
e

(n
s)

1e10

gpu_kernel
allocation
memcpy

Figure 6: Execution time breakdown of 30 runs for Mega inputs.
Memcpy time is not stable.

4.1. Performance Comparison
In this section, we compare and analyze the performance

of microbenchmarks and real-world applications for various
configurations of UVM and Async Memcpy. This comparison
can also indicate whether a workload is bottlenecked by
CPU DRAM to GPU global memory data transfer, or GPU
internal data transfers (global memory to shared memory).

4.1.1. Microbenchmarks. We used both Large and Super
input sizes since both of them show relatively stable
performance among multiple runs. In addition, the GB-level
memory footprint is large enough to make system noise
negligible. We used the average of the 30 runs and make a
side-by-side comparison between the 7 microbenchmarks,
shown in Figure 7.

When considering the overall execution time, there is
almost no performance difference between standard and
async. Considering the geo-mean of the 7 workloads, the
async has only 0.27% and 0.36% performance over standard,
for Large and Super respectively. However, when comparing
the pure GPU kernel time, there is an appreciable difference.

vector_seq
vector_rand saxpy gemv

2DCONV
3DCONV gemm

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Ti
m

e
(n

or
m

al
ize

d
to

 st
an

da
rd

) standard
async

uvm
uvm_prefetch

uvm_prefetch_async

(a) Large input.
vector_seq

vector_rand saxpy gemv
2DCONV

3DCONV gemm
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Ti
m

e
(n

or
m

al
ize

d
to

 st
an

da
rd

) standard
async

uvm
uvm_prefetch

uvm_prefetch_async

(b) Super input.

Figure 7: Comparisons on Microbenchmarks. From bottom (darkest) to top (lightest), each shade shows gpu_kernel, memcpy, and
allocation. The combination of Async Memcpy and UVM benefits vector_seq, but not 3DCONV and gemm.

pathfinder
backprop lud

kmeans knn srad lavaMD
resnet50

yolov3-tiny
resnet18 yolov3 BN nw hotspot

0.0

0.5

1.0

1.5

Ti
m

e
(n

or
m

al
ize

d
to

 st
an

da
rd

)

standard async uvm uvm_prefetch uvm_prefetch_async

Figure 8: Comparisons on real-world applications. From bottom (darkest) to top (lightest), each shade shows gpu_kernel, memcpy, and
allocation. Async Memcpy works better than UVM for lud, but the combination of Async Memcpy and UVM does not benefit yolov3.

For example, async achieves 41.78% GPU kernel time
reduction over standard in the vector_seq workload while
146.02% increment over standard in the 2DCONV workload
(both with Large input sizes). For memory-bounded work-
loads, the 41.78% kernel time reduction only results in less
than 1% overall performance improvement. For compute-
bounded workloads, the overhead due to the additional
pipeline stages in async leads to significant performance
degradation.

The overall system performance cannot be improved by
merely using UVM. As shown in Figure 7, considering the
geo-mean of the 7 workloads, uvm slows down the overall
performance 16.79% and 13.23% over standard, for Large
and Super respectively, though uvm achieves 31.46% and
35.19% time savings over standard on data transfer between
GPUs and CPUs for the two input sizes. The cost of using
UVM, e.g., additional page walking, is non-negligible [2].
Such overhead leads to 2.0× and 2.2× GPU kernel time
increases over standard on Large and Super, counteracting
the benefit of data transfer time savings.

Therefore, we use UVM with prefetch (uvm_prefetch),
which is able to improve the performance by reducing the
number of page faults [3], for a more fair comparison. When
using uvm_prefetch, there is 3.07% and 28.40% performance
improvement over standard for Large and Super input sizes,
respectively. The reason for the limited overall performance
improvement on Large is the nearly constant data allocation
overhead. For GPU kernel and CPU-GPU data transfer time,
uvm_prefetch achieves 54.07% and 45.41% time savings
over standard on the Large input, and 57.50% and 47.90%
time savings over standard on Super.

It is also interesting and worth exploring whether
the asynchronous memory copy can be used together
with unified virtual memory. We introduce our last setup,
uvm_prefetch_async, by applying these two architectural
features together. The average performance improvement
of uvm_prefetch_async over standard is 27.01% for the
Super input size, which is slightly lower than uvm_prefetch
over standard (28.40%). However, that does not mean
asynchronous memory copy should be forbidden for all
scenarios. For memory-bounded workload vector_seq and
vector_rand, uvm_prefetch_async can make the time sav-
ings over standard of the two workloads to 17.81% and
17.87%, which is better than the 15.20% and 16.66% time
savings over standard when using uvm_prefetch. However,
for workloads with higher computation intensity, e.g.,
2DCONV, 3DCONV, and gemm, the additional control logic
overhead in asynchronous memory copy can hurt the
performance. For example, in gemm, uvm_prefetch spends
only 0.06% more time over standard on GPU kernels, while
uvm_prefetch_async spends 7.86% more.

4.1.2. RealWorld Applications. In addition to mi-
crobenchmarks, we show the execution time breakdown of
the 14 real-world applications as well. We use the average
of 30 runs and Super input sizes, shown in Figure 8.

Considering the geo-mean of the 14 workloads, there
is 2.81%, –4.41%, 20.96%, and 22.52% performance im-
provement achieved by async, uvm, uvm_prefetch, and
uvm_prefetch_async over standard, respectively. The ma-
jority of the speedups are coming from a reduction of
CPU-GPU data transfer time. The uvm, uvm_prefetch, and

uvm_prefetch_async achieve 32.70%, 64.24%, and 64.18%
memcpy time savings compared with standard.

In real-world applications, Async Memcpy together
with UVM can bring more performance benefits, as
uvm_prefetch_async achieves the highest speedups. Async
Memcpy pipelines the computation and global memory to
shared memory data transfer, so uvm_prefetch_async has
less GPU kernel overhead compared with uvm_prefetch. The
uvm_prefetch_async spends 21.72% more GPU kernel time
over standard, while uvm_prefetch spends 27.50% more.

Though uvm_prefetch_async beats the performance of
uvm_prefetch in most scenarios, there is one exception,
yolov3. The yolov3 workload is not compute-bounded, since
the GPU kernel time counts only 5.81% of the overall
execution time. The reason uvm_prefetch_async performed
worse is that the GPU global memory to shared memory
data transfer is not the bottleneck of the system data
transfer pipeline, so the async setup does not bring any
performance benefit. In addition, the yolov3 uses the gemm
kernel we studied in the microbenchmark suite, which
follows a very regular and predictable data access pattern,
making uvm_prefetch more powerful under this scenario.
The other two interesting data points are nw and lud. For
nw, prefetch can downgrade the performance, despite using
Async Memcpy or not. The reason is that nw has two CUDA
kernels operating on the same data object, making prefetch
data on one kernel affect the performance of the other
kernel. For lud, the performance only benefits from Async
Memcpy but not UVM (with prefetch). The reason is that lud
follows an irregular data access pattern, making prefetchers
not able to predict the next data access accurately. When
combining these two techniques together, lud maintains
the same speedup as Async Memcpy only; it is not affected
by UVM overhead.
Takeaway 2: (1) UVM without prefetch does not provide
significant performance improvement, but with prefetch
there is a 21% performance gain on real-world applications.
Workloads with regular data access patterns, e.g., 2DCONV
can benefit more from UVM (with prefetch) (up to 2.63×
speedups over standard). (2) Workloads with less regular
data access patterns, e.g., lud can benefit more from Async
Memcpy (up to 1.24× speedups over UVM).

4.2. In-Depth Analysis
Async Memcpy brings additional computation overhead

on GPU kernels to control data transfer pipelines. Based on
the results on gemm, yolov3, and lud, it is not clear whether
a compute-bound workload can benefit from Async Memcpy
if we only consider GPU kernel time as the metric. In this
section, we will dive deep into the GPU kernel to reveal
the real cause affecting Async Memcpy performance.

Analysis of performance counters is essential for opti-
mizing system performance and identifying performance
bottlenecks, which have already been used extensively
in prior performance studies [10, 22]. In this section,
we explore the effects of Async Memcpy and UVM by
comparing the 2 groups of hardware counters. We pick
instruction mix-ups and cache miss rates since they are most

gemm lud yolov3

1010

1011

1012

In
st

 c
ou

nt

standard
async
uvm
uvm_prefetch
uvm_prefetch_async

(a) Control instructions.
gemm lud yolov3

108

109

1010

1011

In
st

 c
ou

nt

standard
async
uvm
uvm_prefetch
uvm_prefetch_async

(b) Integer instructions.

Figure 9: Instruction mix comparison. In gemm and yolov3, Async
Memcpy increases control instruction count, which hurts the
performance.

gemm lud yolov3

100

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

M
iss

 ra
te

standard
async
uvm
uvm_prefetch
uvm_prefetch_async

(a) Load miss rate. gemm lud yolov3

10 1

100

M
iss

 ra
te

standard
async
uvm
uvm_prefetch
uvm_prefetch_async

(b) Store miss rate.

Figure 10: Cache miss rate comparison. Async Memcpy signifi-
cantly reduces the miss rate for both loads and stores in lud.

correlated with the performance based on our measurement
results.

4.2.1. Instruction Mix. We first use the GPU instruction
mix to explore the potential cost when using UVM and
Async Memcpy . We compared the total number of memory
access, floating point, integer, and control instructions.
There is a notable difference in integer and control instruc-
tions between the five setups, so we plot them in Figure 9. It
is shown that the instruction counts would not be affected
too much when UVM (with and without prefetch) is used,
but Async Memcpy does affect the instruction mix.

Based on the results in Section 4, Async Memcpy can
hurt the performance if used with UVM (with prefetch)
on gemm and yolov3, but not on lud. The additional
performance overhead of Async Memcpy comes from the
increase in control instructions (39.98% on gemm and
30.13% on yolov3), which is the result of the additional
stage on the data transfer pipeline.

4.2.2. Global Cache Miss. In addition to the instruction
mix, we also measured other performance counters. There
is no conspicuous difference on most of the counters,
except global cache miss, which is the miss rate for global
load and store in unified L1/texture cache. As shown in
Figure 10, there is 35.96% and 69.99% load and store miss
rate reduction when Async Memcpy is applied on lud,
which is the root cause contributing to the performance
improvement.

4096 2048 1024 512 256 128 64 32 16
of Blocks

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

No
rm

al
ize

d
Ti

m
e

standard
async

uvm
uvm_prefetch

uvm_prefetch_async

Figure 11: Sensitivity of vector_seq with respect to # of blocks.
From bottom (darkest) to top (lightest), each shade shows
gpu_kernel, memcpy, and allocation. Performance remains stable
when # of blocks changes.

1024 512 256 128 64 32
of Threads

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

No
rm

al
ize

d
Ti

m
e

standard
async

uvm
uvm_prefetch

uvm_prefetch_async

Figure 12: Sensitivity of vector_seq with respect to # of threads
per block. From bottom (darkest) to top (lightest), each shade
shows gpu_kernel, memcpy, and allocation. Performance varies
when # of threads changes.

Takeaway 3: Additional control instruction results in
overhead in Async Memcpy. The performance improvements
of Async Memcpy come from reduced cache load and store
miss rates.

5. Sensitivity Studies
Even when we use the same input size, the overall

performance of a workload can still be affected by GPU
program hyperparameters, including the number of CUDA
blocks, threads, and L1-Cache/shared memory partition.
These configurations cannot be determined by compilers
automatically and have to be assigned by CUDA program-
mers. In this section, we further explore how Async Memcpy
and/or UVM are sensitive to these configurations.

5.1. CUDA Block and Thread
Programmers assign the parallelism of each CUDA pro-

gram by following the GPU resource hierarchy (Grid, Block,
Thread) as the guideline. There is almost no limitation3
on the number of blocks in the entire GPU grid. Such
transparency makes large workloads easily programmed on
GPUs without considering real hardware resource limita-
tions.

In Nvidia GPUs, one CUDA block is mapped on one
SM unit (A100 has 108 SM units, each of which contains

3. CUDA uses 16-bit integers as the block index in the 3D grid. As long
as there is no overflow on the block index, there will be no compiling
error.

2KB 4KB 8KB 16KB 32KB 64KB 128KB
Shared Memory Capacity

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ti

m
e

standard
async

uvm
uvm_prefetch

uvm_prefetch_async

Figure 13: Sensitivity of vector_seq with respect to L1-
Cache/Shared Mem partition. From bottom (darkest) to top
(lightest), each shade shows gpu_kernel, memcpy, and allocation.
Increasing shared memory hurts UVM performance.

64 CUDA cores). How Async Memcpy and/or UVM would
affect the CUDA block and thread to the real GPU core
mapping is worth exploring. With more blocks, the entire
input space is partitioned into finer granularity chunks.
With more threads in one block, the parallelism can be
increased but the per-thread shared memory resource gets
reduced, due to the limited shared memory capacity (164KB
per block on A100).

We first explore the effect of the number of blocks
on the overall system performance. We set the number of
threads per block as 256, and change the number of blocks
from 4096 to 16. We used the vector_seq workload since
the computation pattern of this workload is simple and can
be flexibly partitioned into a different number of blocks
(and threads). In addition, the performance of vector_seq
can benefit from both Async Memcpy and UVM. We plot
the execution time breakdown of vector_seq in Figure 11.
Interestingly, there is no obvious performance change (
∼ 2%) on all 5 configurations when using a different
number of blocks. On average, async, uvm_prefetch, and
uvm_prefetch_async achieves 2.77%, 21.34%, and 22.38%
performance improvement over standard, respectively.

Once the total number of cores is fixed (set as 64),
changing the number of threads within each block can
affect the performance as well. As shown in Figure 12, the
performance is sensitive to the number of threads per block
(more than 50%). The reason is that when there are fewer
than 128 threads, GPU resources remain underutilized (A100
has 6, 912 CUDA cores). The execution time breakdown
also confirms this. The GPU kernel execution time of 32
threads is 3.95× as 128 threads. Though the performance
downgrades when using fewer threads, async performs
much better than standard (1.01% speedups on 1024 threads,
but 16.51% speedups on 32 threads). The reason is that
fewer threads in one block can lead to a deeper buffer
for each thread, with the same per-block shared memory
capacity. As long as the buffer becomes deeper, Async
Memcpy shows more efficiency in improving performance
than UVM (with prefetch).
Takeaway 4: The performance of UVM and Async Memcpy
is not sensitive to the number of CUDA blocks, but very
sensitive to the number of threads per block.

GPU Kernel

Job 1
cudaMallocManaged

Global to Shared Mem D-H uvm memcpyH-D uvm memcpy

cudaFree

cudaMallocManaged

H-D uvm memcpy

Computation

Job 2

Global to Shared Mem

Computation

Job 1
cudaMallocManaged

Global to Shared Mem D-H uvm memcpyH-D uvm memcpy

cudaFreeComputation

cudaMallocManaged
GPU Kernel

H-D uvm memcpy Global to Shared Mem

Computation

D-H uvm memcpy

Job 2

…

GPU Kernel

GPU Kernel

Figure 14: Without/with the inter-job pipeline. H-D and D-H is the abbreviation of Host-to-Device and Device-to-Host.

5.2. L1-Cache/Shared Memory Partition
Nvidia Ampere architecture features a unified L1 cache,

texture cache, and shared memory for a total of 192KB per
SM. The shared memory can be configured to use up to
164KB of the unified memory while the rest is used for
both the L1 and texture cache [19]. The L1-cache/shared
memory partition is decided by CUDA programmers, so
it is important to understand the trade-offs in making the
partition decisions.

It is interesting to know UVM and Async Memcpy are
sensitive to the L1-cache/shared memory partition. The
164KB shared memory capacity is usually larger than a
single page size (4KB for x86 systems). In UVM, multiple
page faults could be triggered when fetching data to shared
memory. Async Memcpy pipelines the thread computation
and data transfer by double buffering the shared memory,
making an efficient partition more essential.

We increase the shared memory capacity from 2KB to
128 KB4 and compare the performance of the 5 configura-
tions (shown Figure 13). After allocating more than 4KB of
shared memory, the per-thread buffer depth will be enough
for pipelining the kernel computation and global to shared
memory data transfer. The performance of using Async
Memcpy and UVM together can be hurt if too much shared
memory is allocated, which reduces the L1-cache capacity
and bottlenecks the system performance. A decent amount
of L1-cache has to be reserved, in order to protect current
cache lines from being evicted by the UVM prefetcher.
Takeaway 5: Async Memcpy and UVM are sensitive to
shared memory/L1-cache partition. Allocating too small of
a shared memory (too large L1-cache) capacity can hurt
Async Memcpy performance, while too large of a shared
memory (too small L1-cache) can hurt UVM performance.

6. Discussion
Though Async Memcpy and UVM can improve the CPU-

GPU heterogeneous system performance, there are still

4. Allocating more than 32KB shared memory requires dynamic allo-
cations. Results in Figure 13 are inconsistent with results in previous
sections since we used 32KB static allocated shared memory before.

limitations in current data transfer pipelines. In this section,
we discuss a new data transfer model that overlaps multiple
jobs. We use the profiling results shown earlier in this paper
to derive preliminary estimates for the performance gain
of this new data transfer model.

6.1. Limitations of UVM and Async Memcpy
Async Memcpy and UVM improve the system perfor-

mance by overlapping data transfer and computation. Based
on the execution time breakdown in Section 4, the CPU-
GPU data transfer time decreases from 55.86% to 24.55%
of the overall execution time. Since less time is spent on
data transfer, GPU occupancy is improved as well (from
25.15% to 37.79%).

Though helped by Async Memcpy and UVM, the GPU
occupancy is still relatively low. GPU computation units
are idle during more than 60% of cycles. In addition, since
Async Memcpy and UVM do not improve the CPU side,
now the overall system time is bounded by data allocation
(cudaMalloc() and cudaFree()) time. Data allocation only
counts for 18.99% of the overall execution time before but
with Async Memcpy and UVM it increases to 37.66%.

6.2. A New Data Transfer Model
Overlapping data allocation with other tasks (data

transfer and GPU kernel) is the future direction to further
improve the data pipeline. However, data allocation has
to be done before data transfer and GPU kernel for every
single workload, so overlapping data allocation time with
other tasks is infeasible for most scenarios. The exception
can be there if GPU kernels are processed in batches.
Data allocation of the second kernel can happen while
GPUs are processing the first kernel, which can be used in
Kaas (Kernel-as-a-Service) [23] systems. Overlapping data
allocation across kernels is a new data transfer model that
can be used in future research.

To have a better illustration of how this new data
transfer model works atop of Async Memcpy and UVM, we
visualize the current model of the batch processing pipeline
(top half) and the new data transfer model (bottom half)

in Figure 14. With the help of UVM and Async Memcpy,
the CPU-GPU and global memory-shared memory data
transfer can be overlapped with GPU kernel computation.
The new data transfer model attempts to reduce overall
execution time by minimizing the time the CPU and GPU
spend idle. This is achieved through overlapping CPU and
GPU execution for different job processes. Once the GPU
kernel of job 1 begins running, job 2 is able to start data
allocation (cudaMallocManaged()), utilizing the idle CPU.
Once the GPU kernel of job 1 has finished execution, job 2
can run its own kernel, while job 1 proceeds with the data
deallocation (cudaFree()) on the CPU. In the idealist case,
the 37.66% data allocation (and deallocation) time can be
overlapped with the 37.79% GPU kernel time. Therefore,
an additional more than 30% performance improvement
can be achieved if the new data transfer model is used,
which is a promising future research direction.

7. Conclusion
In this paper, we investigate the performance implica-

tions of Async Memcpy and UVM. We conduct a deep char-
acterization study by creating a benchmark suite, including
7 microbenchmarks and 14 real-workload applications. We
believe the benchmark suite has the potential to enable
further research in this domain. So, we plan to release our
benchmark suite publicly.

We witness 21% performance gain on real-world appli-
cations when using UVM. With the help of Async Memcpy,
the GPU computation can be pipelined with global memory
to shared memory data transfer, which gives irregular
programs, e.g., kmeans and lud, around 20% benefits atop
of UVM. By breaking down the execution time, we give
guidelines to software developers on making programming
decisions. They could consider using both UVM (with
prefetch) and Async Memcpy for GB-level memory-bounded
applications. UVM (with prefetch) can make the performance
benefit more if the workload follows regular data access
patterns, while the data access pattern would not have an
impact on Async Memcpy.

Furthermore, we perform a sensitivity study and make
both software programmers and hardware architects aware
that the Async Memcpy and UVM performance can be
affected by the number of threads per block, and L1-
cache/shared memory partition strategy. These parameters
should be considered in the compiler and resource mapping
designs. We also discuss future research directions that
need contributions from both the system software and
hardware architecture communities to further improve the
data transfer pipelines.

Acknowledgement
We thank anonymous reviewers for their constructive

feedback and insightful comments. This research was sup-
ported in part by NSF grant numbers 1763848 and 1828105,
and gifts from Cisco and Amazon Web Services (AWS).
The authors would also like to acknowledge the computing

servers donated by Ampere and Nvidia, and the support
from the iMAGINE Consortium, the ML Labs and the
Texas Advanced Computing Center (TACC). Any opinions,
findings, conclusions, or recommendations are those of the
authors and not of the National Science Foundation or other
sponsors.

References
[1] “Linux perf tool,” 2023. [Online]. Available: https://perf.wiki.kernel.

org/
[2] T. Allen and R. Ge, “Demystifying gpu uvm cost with deep runtime

and workload analysis,” in 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2021, pp. 141–
150.

[3] T. Allen and R. Ge, “In-depth analyses of unified virtual memory
system for gpu accelerated computing,” in Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2021, pp. 1–15.

[4] H. Anzt, Y. M. Tsai, A. Abdelfattah, T. Cojean, and J. Dongarra,
“Evaluating the performance of nvidia’s a100 ampere gpu for sparse
and batched computations,” in 2020 IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems
(PMBS). IEEE, 2020, pp. 26–38.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in 2009 IEEE international symposium on workload
characterization (IISWC). Ieee, 2009, pp. 44–54.

[6] J. Choquette and W. Gandhi, “Nvidia a100 gpu: Performance &
innovation for gpu computing,” in 2020 IEEE Hot Chips 32 Symposium
(HCS). IEEE Computer Society, 2020, pp. 1–43.

[7] J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky,
“Nvidia a100 tensor core gpu: Performance and innovation,” IEEE
Micro, vol. 41, no. 2, pp. 29–35, 2021.

[8] C. Gregg and K. Hazelwood, “Where is the data? why you cannot
debate cpu vs. gpu performance without the answer,” in (IEEE ISPASS)
IEEE International Symposium on Performance Analysis of Systems
and Software. IEEE, 2011, pp. 134–144.

[9] Y. Gu, W. Wu, Y. Li, and L. Chen, “Uvmbench: A comprehensive
benchmark suite for researching unified virtual memory in gpus,”
arXiv preprint arXiv:2007.09822, 2020.

[10] Y. Hao, N. Jain, R. Van der Wijngaart, N. Saxena, Y. Fan, and X. Liu,
“Drgpu: A top-down profiler for gpu applications,” in Proceedings of the
2023 ACM/SPEC International Conference on Performance Engineering,
2023, pp. 43–53.

[11] J. Hestness, S. W. Keckler, and D. A. Wood, “Gpu computing pipeline
inefficiencies and optimization opportunities in heterogeneous cpu-
gpu processors,” in 2015 IEEE International Symposium on Workload
Characterization. IEEE, 2015, pp. 87–97.

[12] G. Huang, Y. Bai, L. Liu, Y. Wang, B. Yu, Y. Ding, and Y. Xie, “Alcop:
Automatic load-compute pipelining in deep learning compiler for
ai-gpus,” Proceedings of Machine Learning and Systems, vol. 5, 2023.

[13] H. Kim, J. Sim, P. Gera, R. Hadidi, and H. Kim, “Batch-aware unified
memory management in gpus for irregular workloads,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2020, pp. 1357–
1370.

[14] J. B. Kotra, M. LeBeane, M. T. Kandemir, and G. H. Loh, “Increasing
gpu translation reach by leveraging under-utilized on-chip resources,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 1169–1181.

[15] J. Lee, J. M. Lee, Y. Oh, W. J. Song, and W. W. Ro, “Snakebyte: A
tlb design with adaptive and recursive page merging in gpus,” in
2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2023, pp. 1195–1207.

https://perf.wiki.kernel.org/
https://perf.wiki.kernel.org/

[16] C. Lutz, S. Breß, S. Zeuch, T. Rabl, and V. Markl, “Pump up the
volume: Processing large data on gpus with fast interconnects,” in
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, 2020, pp. 1633–1649.

[17] Nvidia, “Cupti,” 2023. [Online]. Available: https://docs.nvidia.com/
cuda/cupti/

[18] Nvidia, “Cutlass 3.0,” 2023. [Online]. Available: https://github.com/
NVIDIA/cutlass/

[19] Nvidia, “Nvidia a100 gpu architecture,” https://
images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf, 2023.

[20] Nvidia, “Nvidia p100 gpu architecture,” https://images.nvidia.com/
content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf,
2023.

[21] Nvidia, “Nvidia v100 gpu architecture,” https://images.nvidia.com/
content/volta-architecture/pdf/volta-architecture-whitepaper.pdf,
2023.

[22] R. Panda, S. Song, J. Dean, and L. K. John, “Wait of a decade: Did
spec cpu 2017 broaden the performance horizon?” in 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2018, pp. 271–282.

[23] N. Pemberton, A. Zabreyko, Z. Ding, R. Katz, and J. Gonzalez,
“Kernel-as-a-service: A serverless interface to gpus,” arXiv preprint
arXiv:2212.08146, 2022.

[24] L.-N. Pouchet, “Polybench: The polyhedral benchmark suite,” 2012.
[Online]. Available: http://www.cs.ucla.edu/%7Epouchet/software/
polybench

[25] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith, and Y. He, “Zero-
infinity: Breaking the gpu memory wall for extreme scale deep
learning,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2021, pp.
1–14.

[26] J. Redmon, “Darknet: Open source neural networks in c,” http://
pjreddie.com/darknet/, 2013–2016.

[27] J. H. Ryoo, S. J. Quirem, M. Lebeane, R. Panda, S. Song, and L. K. John,
“Gpgpu benchmark suites: How well do they sample the performance
spectrum?” in 2015 44th International Conference on Parallel Processing.
IEEE, 2015, pp. 320–329.

[28] A. H. N. Sabet, Z. Zhao, and R. Gupta, “Subway: Minimizing data
transfer during out-of-gpu-memory graph processing,” in Proceedings
of the Fifteenth European Conference on Computer Systems, 2020, pp.
1–16.

[29] C. Shao, J. Guo, P. Wang, J. Wang, C. Li, and M. Guo, “Oversub-
scribing gpu unified virtual memory: Implications and suggestions,”
in Proceedings of the 2022 ACM/SPEC on International Conference on
Performance Engineering, 2022, pp. 67–75.

[30] M. Svedin, S. W. Chien, G. Chikafa, N. Jansson, and A. Podobas,
“Benchmarking the nvidia gpu lineage: From early k80 to modern
a100 with asynchronous memory transfers,” in Proceedings of the
11th International Symposium on Highly Efficient Accelerators and
Reconfigurable Technologies, 2021, pp. 1–6.

[31] Y. Wang, B. Feng, Z. Wang, T. Geng, K. Barker, A. Li, and Y. Ding,
“Mgg: Accelerating graph neural networks with fine-grained intra-
kernel communication-computation pipelining on multi-gpu plat-
forms,” in 17th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 23), 2023, pp. 779–795.

[32] K. Yoshida, R. Sageyama, S. Miwa, H. Yamaki, and H. Honda,
“Analyzing performance and power-efficiency variations among nvidia
gpus,” in Proceedings of the 51st International Conference on Parallel
Processing, 2022, pp. 1–12.

[33] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, and S. W. Keckler,
“Towards high performance paged memory for gpus,” in 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2016, pp. 345–357.

[34] K. Zhou, J. Anderson, X. Meng, and J. Mellor-Crummey, “Low
overhead and context sensitive profiling of gpu-accelerated applica-
tions,” in Proceedings of the 36th ACM International Conference on
Supercomputing, 2022, pp. 1–13.

[35] W. Zhu, G. Cox, J. Vesely, M. Hairgrove, A. L. Cox, and S. Rixner, “Uvm
discard: Eliminating redundant memory transfers for accelerators,”
in 2022 IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 2022, pp. 27–38.

https://docs.nvidia.com/cuda/cupti/
https://docs.nvidia.com/cuda/cupti/
https://github.com/NVIDIA/cutlass/
https://github.com/NVIDIA/cutlass/
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://www.cs.ucla.edu/%7Epouchet/software/polybench
http://www.cs.ucla.edu/%7Epouchet/software/polybench
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

Appendix

1. Abstract
This artifact appendix provides guidelines for repro-

ducing the profiling results on the 5 different UVM
and Async Memcpy setups, which are shown in Fig-
ure 4, 5, 6, 7, 8, 9, 10, 11, 12, 13.

2. Artifact check-list (meta-information)
• Algorithm: workloads list in Table 2.
• Program: Python, Nvidia CUDA, CUPTI, and Nsight
Compute.

• Run-time environment: Linux x86_64 5.4.0-153-
generic.

• Data set: Synthetic data (scripts for generating datasets
included in the artifacts).

• Hardware: CPU: AMD EPYC 7742 64-Core Processor
@2.90GHZ; GPU: NVIDIA A100.

• Disk space required: 100GB.
• Time to prepare workflow (approximately): About
one hour to install related Python packages and
NVIDIA Nsight Systems.

• Time to profile (approximately): 12 hours to profile
all workloads for 30 iterations. 10 minutes for data
post-processing.

• Publicly available: Yes.

3. Description
3.1. How to access. Our profiling results and
benchmark source codes are available at Zenodo
(https://zenodo.org/record/8222694) and GitHub
(https://github.com/UT-LCA/UVMAsyncBench)

3.2. Hardware dependencies. The experiments are ex-
pected to run on machines with Nvidia GPUs no eariler than
the Ampere architecture, with at least 64GB CPU memory
and 32GB GPU memory. Our profiling results were collected
on an a machine with AMD EPYC 7742 (1TB DRAM) and
Nvidia A100 (40GB DRAM). Please expect difference when
running on different hardware platforms.

3.3. Software dependencies. The experiments are ex-
pected to run on Linux machines, with GCC, CUDA, and
Nsight Systems support. Our profiling results were collected
on an a machine with GCC 9.4.0, CUDA 11.4, and NVIDIA
Nsight Systems 2021.2.4.12. Please expect difference when
using different software versions.

4. Installation
Please obtain the workloads using the Zenodo or

Github link. Please install Python3 and GCC on your
machine first. We recommend Python 3.8.10 and GCC
9.4.0. Our data parsing and visualization scripts do not
require any Nvidia GPU related environment. To re-
produce the profiling results, please get CUDA 11.4
from https://developer.nvidia.com/cuda-11-4-0-download-
archive.

5. Experiment workflow
To reproduce all profiling results, please follow the three

steps (you may skip this if you are only interested in parsing
and visualizing the prepared profiling results).

Step 1: setup environment variable.
sou r c e env . sh

Step 2: profile microbenchmarks & collect performance
counters (30 iterations).

cd work loads / micro /
python3 r un_m i c r o _ a l l . py − i 30 −− p r o f i l i n g
python3 run_mic ro_pe r f . py − i 30 −− p r o f i l i n g

Step 3: profile real-world applications & collect perfor-
mance counters (30 iterations).

cd work loads / r e a lwo r l d /
python3 r u n _ r e a l _ a l l . py − i 30 −− p r o f i l i n g
python3 r u n _ r e a l _ p e r f . py − i 30 −− p r o f i l i n g

6. Evaluation and expected results
Reproduce Figure 4, Figure 5, Figure 6, and Figure 7.
cd work loads / micro /
python3 r un_m i c r o _ a l l . py − i 30

Reproduce Figure 8.
cd work loads / r e a lwo r l d /
python3 r u n _ r e a l _ a l l . py − i 30

Reproduce Figure 9 and Figure 10.
cd work loads /
python3 p r o c e s s _ p e r f . py − i 30

Reproduce Figure 11 and Figure 12.
cd work loads / micro /
python3 r u n _m i c r o _ s e n s i t i v i t y . py − i 30

Reproduce Figure 13.
cd work loads / micro /
python3 run_mic ro_shared . py − i 30

7. Experiment customization
You may use the –i input argument to change the

number of profiling iterations. You may change the run_∗.sh
script under each workload folder for different input sizes.

https://zenodo.org/record/8222694
https://github.com/UT-LCA/UVMAsyncBench/
https://developer.nvidia.com/cuda-11-4-0-download-archive
https://developer.nvidia.com/cuda-11-4-0-download-archive

	Introduction
	Background and Related Work
	Unified Virtual Memory
	Asynchronous Memcpy
	UVM vs Async Memcpy

	Experimental Methodology
	Experimental Setup
	Hardware
	Software
	UVM and Async Memcpy Configurations

	Overview of Benchmarks
	Microbenchmarks
	Real-world Applications

	Benchmark Configurations

	Results
	Performance Comparison
	Microbenchmarks
	RealWorld Applications

	In-Depth Analysis
	Instruction Mix
	Global Cache Miss

	Sensitivity Studies
	CUDA Block and Thread
	L1-Cache/Shared Memory Partition

	Discussion
	Limitations of UVM and Async Memcpy
	A New Data Transfer Model

	Conclusion
	References
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization

