
NextGen-Malloc: Giving Memory Allocator Its Own
Room in the House

Ruihao Li
liruihao@utexas.edu

The University of Texas at Austin

Qinzhe Wu
qw2699@utexas.edu

The University of Texas at Austin

Krishna Kavi
Krishna.Kavi@unt.edu
Univerisy of North Texas

Gayatri Mehta
Gayatri.Mehta@unt.edu
Univerisy of North Texas

Neeraja J. Yadwadkar
neeraja@austin.utexas.edu

The University of Texas at Austin
and VMware Research

Lizy K. John
ljohn@ece.utexas.edu

The University of Texas at Austin

ABSTRACT
Memory allocation and management have a significant

impact on performance and energy of modern applications.
We observe that performance can vary by as much as 72%
in some applications based on which memory allocator is
used. Many current allocators are multi-threaded to support
concurrent allocation requests from different threads. How-
ever, such multi-threading comes at the cost of maintaining
complex metadata that is tightly coupled and intertwined
with user data. When memory management functions and
other user programs run on the same core, the metadata used
by management functions may pollute the processor caches
and other resources.

In this paper, we make a case for offloading memory allo-
cation (and other similar management functions) from main
processing cores to other processing units to boost perfor-
mance, reduce energy consumption, and customize services
to specific applications or application domains. To offload
these multi-threaded fine-granularity functions, we propose
to decouple the metadata of these functions from the rest
of application data to reduce the overhead of inter-thread
metadata synchronization. We draw attention to the follow-
ing key questions to realize this opportunity: (a) What are
the tradeoffs and challenges in offloading memory alloca-
tion to a dedicated core? (b) Should we use general-purpose
cores or special-purpose cores for executing critical system
management functions? (c) Can this methodology apply to
heterogeneous systems (e.g., with GPUs, accelerators) and
other service functions as well?

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HOTOS ’23, June 22–24, 2023, Providence, RI, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0195-5/23/06.
https://doi.org/10.1145/3593856.3595911

CCS CONCEPTS
• Software and its engineering → Memory manage-
ment.

KEYWORDS
Memory Management
ACM Reference Format:
Ruihao Li, Qinzhe Wu, Krishna Kavi, Gayatri Mehta, Neeraja J. Yad-
wadkar, and Lizy K. John. 2023. NextGen-Malloc: Giving Memory
Allocator Its Own Room in the House. InWorkshop on Hot Topics
in Operating Systems (HOTOS ’23), June 22–24, 2023, Providence, RI,
USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3593856.3595911

1 INTRODUCTION
Data intensive applications, including machine learning

(ML) training and inference serving rely on efficient manage-
ment of large amounts of data. With these increasing capac-
ities and deep memory hierarchies, the memory wall [35]
(viz., the gap between processor speeds and memory access
latencies) is becoming an ever increasing impediment. ML
accelerators spend only 23% of the overall cycles on compu-
tations and more than 50% on data preparation [15]. Even in
general purpose warehouse-scale datacenters, 50% of com-
pute cycles are idle waiting for memory accesses [14, 16],
causing performance degradation for the applications. To
alleviate such performance bottlenecks, efficient memory
management mechanisms [14, 18, 20] that reduce memory
needs (by reducing fragmentation) and cache misses (by re-
ducing conflicts between metadata and application data) are
crucial.
To address the need for efficient memory allocation and

management, multiple software solutions, in the form of
optimized Malloc libraries, have been created (e.g., TCMal-
loc [14] from Google and Mimalloc [18] from Microsoft).
Such libraries are typically multi-threaded to support con-
current requests for memory allocation and management,
and rely on complex metadata to accomplish the allocation

https://doi.org/10.1145/3593856.3595911
https://doi.org/10.1145/3593856.3595911
https://doi.org/10.1145/3593856.3595911

HOTOS ’23, June 22–24, 2023, Providence, RI, USA Li et al.

0

50

100

150

200

250

300

PTMalloc2 JeMalloc TCMalloc Mimalloc

Overall execution time (seconds)

0

1

2

3

4

5

PTMalloc2 JeMalloc TCMalloc Mimalloc

Time on malloc & free (seconds)

Figure 1: Execution time sensitivity to memory allocation:
variations up to 72% in xalancbmk, though only 2% time spent
on malloc and free.

and management. However, if the same core executes mem-
ory management and application code, maintaining such
metadata can pollute processor caches, cause conflicts on
other resources and can affect overall performance.

To understand the effectiveness of existing software solu-
tions for memorymanagement, we compare the performance
of four different memory allocators (PTMalloc2 [12], Jemal-
loc [9], TCMalloc [14], and Mimalloc [18]) for xalancbmk (a
representative workload from SPEC cpu2017 [23, 25], which
performs transformations on XML data). We observe that
with an enhanced memory allocator, the overall system per-
formance can be improved by as much as 1.72× (see Fig-
ure 1). On other allocation intensive workloads, e.g., xmalloc
and cache-scratch in mimalloc-bench [18, 22], performance
variance can be more than 10× depending on the allocator
used. We notice that the choice of memory allocator not
only impacts the performance of the allocator code itself
but also other parts of the program. For example, although
only 2% of the execution time is spent on malloc and free by
xalancbmk, we can see as much as 72% difference in overall
execution time when Mimalloc is used instead of PTMalloc2.
This makes a compelling case for further investigating and
optimizing these memory management functions.
Existing memory allocation mechanisms that are imple-

mented in software achieve higher performance compared
with the default Glibc (PTMalloc2) memory allocators. How-
ever, they still fall short in leveraging system-level optimiza-
tions, like reducing cache pollution and TLB misses, which
cannot be implemented without understanding underlying
hardware. In addition, software-only solutions always suffer
from balancing allocation speed and memory consumption
(partly due to fragmentation), making it difficult to develop
a one-size-fits-all allocation solution.
Alternatively, hardware accelerators are considered for

implementing memory allocation mechanisms. For instance,
Kanev et al. [17], proposed a separate cache inside main
CPUs for memory management algorithms, thus eliminating
cache conflicts between memory management metadata and
application data, while still utilizing powerful main CPUs for

memory management. Mass et al. [19], used a near-memory
accelerator to offload garbage collection functions. However,
most hardware solutions rely on customized hardware units,
that (a) make it infeasible to use them as general purpose
memory management solution, or (b) necessitate frequent
changes to the hardware as algorithms evolve.
Next generation memory allocators will likely continue

to be complex. One way to handle their complexity without
impacting application performance is to isolate the alloca-
tion functions from rest of the code and provide separate
resources to it. This will prevent allocators from polluting
the cache and interfering with other metadata of applica-
tions. However, current allocators cannot easily be “plucked”
out of the code and offloaded to dedicated cores, because the
metadata is usually tightly coupled to the user data.

In this paper, we introduce NextGen-Malloc, a novel mem-
ory allocator that restructures the memory management
metadata and makes it possible to offload the allocation to a
separate dedicated core. The design of NextGen-Malloc neces-
sitates innovations in software, hardware and their codesign.
Just like a baby in a big family, the memory allocator is grow-
ing up. Now it is time to give it a new room (core) in our
house (CPU). New research questions will arise with the
growing child NextGen-Malloc. We will explore these ques-
tions in this paper. How to tradeoff the overhead (additional
inter-core communication) and the benefit (a reduction of
cache pollution and asynchronous execution) of offloading
memory allocators? The choice of the room type (viz., type
of processing core) is another research question. Should the
room be the same as other rooms (i.e., other CPU cores),
or a small room is enough for memory allocation? Can the
room be used for other functions instead of exclusively for
memory allocation?

2 BACKGROUND AND MOTIVATION
This section identifies the primary reasons and inefficien-

cies contributing to the performance differences among dif-
ferent memory allocators.

2.1 Memory Allocators
Memory management operations exist at two levels: user

level and kernel level. User-level memory management oper-
ations are implemented by a UMA (user-level memory allo-
cator), such as PTmalloc2 [12] (the default Glibc implemen-
tation), TCMalloc [14] (by Google), and Mimalloc [18] (by
Microsoft). There are other domain-specific UMAs as well,
such as NVAlloc [7] for non-volatile memory. For the kernel-
level operations,𝑚𝑚𝑎𝑝 () system calls are used to manage
private anonymous mapping segments for each process. But
relying on𝑚𝑚𝑎𝑝 () system call for each𝑚𝑎𝑙𝑙𝑜𝑐 () can result

NextGen-Malloc: Giving Memory Allocator Its Own Room in the House HOTOS ’23, June 22–24, 2023, Providence, RI, USA

Table 1: Processor performancemonitor data for xalancbmk.
TLB misses vary more than 10x and LLC load misses vary 4x
between TCMalloc and PTMalloc2.

Allocator PTMalloc2 JeMalloc TCMalloc Mimalloc

cycles ########## ######### ######### #########

instructions ########## ######### ######### #########

context-switches 7,042 4,772 4,765 18,364

page-faults 370,320 1,187,260 380,365 457,448

LLC-load-misses ########## 94,449,890 ######### #########

LLC-loads ########## ######### ######### #########

LLC-store-misses ########## ######### ######### #########

LLC-stores ########## ######### ######### #########

dTLB-load-misses ########## ######### ######### #########

dTLB-loads ########## ######### ######### #########

dTLB-store-misses 36,689,163 29,368,560 25,905,376 27,872,045

dTLB-stores ########## ######### ######### #########

Allocator PTMalloc2 JeMalloc TCMalloc Mimalloc

cycles 1.177E+12 7.115E+11 7.091E+11 6.959E+11

instructions 1.282E+12 1.320E+12 1.264E+12 1.262E+12

LLC-load-MPKI 0.317 0.072 0.080 0.117

LLC-store-MPKI 0.277 0.123 0.099 0.105

dTLB-load-MPKI 1.407 0.112 0.130 0.129

dTLB-store-MPKI 0.029 0.022 0.020 0.022

Allocator PTMalloc2 JeMalloc TCMalloc Mimalloc

cycles 1.177E+12 7.115E+11 7.091E+11 6.959E+11

instructions 1.282E+12 1.320E+12 1.264E+12 1.262E+12

LLC-load-misses 4.059E+08 9.445E+07 1.016E+08 1.477E+08

LLC-store-misses 3.554E+08 1.630E+08 1.254E+08 1.321E+08

dTLB-load-misses 1.804E+09 1.482E+08 1.641E+08 1.628E+08

dTLB-store-misses 3.669E+07 2.937E+07 2.591E+07 2.787E+07

of threads 1 2 4 8

cycles 4.333E+10 6.708E+10 1.148E+11 1.963E+11

instructions 2.387E+10 2.979E+10 3.893E+10 4.874E+10

LLC-load-misses 1.223E+05 2.196E+05 2.477E+06 1.175E+07

LLC-store-misses 3.676E+06 4.231E+06 1.650E+07 5.402E+07

in significant performance penalties caused by switching be-
tween user and kernel modes. To minimize these overheads,
most UMAs request an entire page1, which is usually larger
than the size requested by 𝑚𝑎𝑙𝑙𝑜𝑐 () calls. For subsequent
𝑚𝑎𝑙𝑙𝑜𝑐 () calls, the UMA can satisfy the requests out of the
page and make additional𝑚𝑚𝑎𝑝 () calls only when space in
the allocated page is exhausted.
Observation: Managing the memory space within pre-

allocated pages in a way that strikes a balance between allo-
cation speed and memory fragmentation is an open research
problem.

2.2 Malloc impacts more than you think!
The implementation of memory management functions

can potentially have significant impact on the overall execu-
tion time of applications. In this section, we present evidence
to support the claimwemade earlier: “Though only 2% of time
is spent on memory allocation, more than 70% performance
difference can exist with different implementations”.

The above claimmay appear counter-intuitive. Table 1 lists
the hardware PMU (Performance Monitor Unit) event counts
for xalancbmk with the four memory allocators. Based on
the profiling results, the number of LLC (Last Level Cache)
load and store misses, and the number of dTLB (data Transla-
tion Lookaside Buffer) load misses are reduced dramatically
(besides absolute miss numbers, the miss rate reduced as
well) on the three state-of-the-art industry-level allocators
(Jemalloc, Mimalloc, and TCMalloc) compared with the de-
fault Glibc allocator (PTMalloc2). The impact of TLB misses
is non-negligible, which can incur 100s of cycles in modern
processors [11, 27]. In addition, in warehouse-scale comput-
ers, half of the CPU back-end cycles can be spent on serving
data cache requests [16].
Observation: TLB and LLC misses are key factors affect-

ing the overall performance and sensitive to different memory
allocators. Alleviating the cache pollution is a potential direc-
tion for the next-generation memory allocators to explore, to
achieve a lower number of TLB and LLC misses.

1The page size for UMA may be different from OS page size [14].

Table 2: PMU data for xmalloc on TCMalloc using different
number of threads. LLC misses increase more than 10x when
the number of threads increases from 1 to 8.

Allocator PTMalloc2 JeMalloc TCMalloc Mimalloc

cycles ########## ######### ######### #########

instructions ########## ######### ######### #########

context-switches 7,042 4,772 4,765 18,364

page-faults 370,320 1,187,260 380,365 457,448

LLC-load-misses ########## 94,449,890 ######### #########

LLC-loads ########## ######### ######### #########

LLC-store-misses ########## ######### ######### #########

LLC-stores ########## ######### ######### #########

dTLB-load-misses ########## ######### ######### #########

dTLB-loads ########## ######### ######### #########

dTLB-store-misses 36,689,163 29,368,560 25,905,376 27,872,045

dTLB-stores ########## ######### ######### #########

Allocator PTMalloc2 JeMalloc TCMalloc Mimalloc

cycles 1.177E+12 7.115E+11 7.091E+11 6.959E+11

instructions 1.282E+12 1.320E+12 1.264E+12 1.262E+12

LLC-load-MPKI 0.317 0.072 0.080 0.117

LLC-store-MPKI 0.277 0.123 0.099 0.105

dTLB-load-MPKI 1.407 0.112 0.130 0.129

dTLB-store-MPKI 0.029 0.022 0.020 0.022

Allocator PTMalloc2 JeMalloc TCMalloc Mimalloc

cycles 1.177E+12 7.115E+11 7.091E+11 6.959E+11

instructions 1.282E+12 1.320E+12 1.264E+12 1.262E+12

LLC-load-misses 4.059E+08 9.445E+07 1.016E+08 1.477E+08

LLC-store-misses 3.554E+08 1.630E+08 1.254E+08 1.321E+08

dTLB-load-misses 1.804E+09 1.482E+08 1.641E+08 1.628E+08

dTLB-store-misses 3.669E+07 2.937E+07 2.591E+07 2.787E+07

of threads 1 2 4 8

cycles 4.333E+10 6.708E+10 1.148E+11 1.963E+11

instructions 2.387E+10 2.979E+10 3.893E+10 4.874E+10

LLC-load-misses 1.223E+05 2.196E+05 2.477E+06 1.175E+07

LLC-store-misses 3.676E+06 4.231E+06 1.650E+07 5.402E+07

2.3 Existing Allocators are Limiting
Modern UMAs support concurrent memory𝑚𝑎𝑙𝑙𝑜𝑐 () and

𝑓 𝑟𝑒𝑒 () operations for multi-threaded programs, which re-
quires processing𝑚𝑎𝑙𝑙𝑜𝑐 () and 𝑓 𝑟𝑒𝑒 () requests from differ-
ent physical cores and different address spaces simultane-
ously. As the number of cores within a single socket keeps
increasing, it will compound the challenges for software
UMAs in handling thread contentions: the inter-core meta-
data synchronization requires atomic operations (or locks)
to maintain the upper-level global free lists. Software mutex
locks are used to control access to metadata to process re-
quests from different cores. The cost of using such software
locks is high since cross-core communication is involved,
causing a critical performance bottleneck as the communica-
tion overheads increase with the number of cores [29, 34].
Multiple software solutions have been used to address

the multi-thread contention issue. TCMalloc [13] uses per-
CPU/thread cache to maintain metadata associated with each
logical core, avoiding locks for most memory allocations and
deallocations. Mimalloc [18] uses three page-local shared
free lists to increase locality, avoid contention, and support
a highly-tuned allocation and free on fast path. However,
maintaining thread-local caches will increase metadata size,
resulting inmore heapmemory consumption andmore cache
pollution for the user program. Also, the number of logical
threads may exceed the number of available physical cores,
resulting in more overhead in switching between thread-
local metadata.
To demonstrate the potential cache pollution in multi-

threaded UMAs, we collect the PMU event counts for xmal-
loc [4] workload2 on TCMalloc (listed in Table 2). As the
number of threads increases, they contend with each other
for accessing the thread-local cache. This results in a signifi-
cant LLC miss increment (more than 10x when the number
of threads increases from 1 to 8).

Observation: It is challenging to address thread contention
well without understanding the underlying hardware mecha-
nisms for synchronization and communication.

2xmalloc [4] is a multi-threaded benchmark by Lever and Boreham and
used to exercise cases where a thread allocates data but a different thread
deallocates the allocated blocks.

HOTOS ’23, June 22–24, 2023, Providence, RI, USA Li et al.

Expectation: If the execution of the memory allocator and
user program are separated, all thread-local metadata can re-
side within one core, alleviating cache pollution. This can be
achieved by making𝑚𝑎𝑙𝑙𝑜𝑐 () run on a dedicated core separat-
ing from other user programs.

3 OPPORTUNITIES
Merely offloading memory allocators to a dedicated core

is not what NextGen-Malloc entails. There are several chal-
lenges to be solved to make it a reality and to achieve its full
potential. We present some impactful avenues here.

3.1 Offload Malloc to its Own Core
By offloading memory management functions to a dedi-

cated core, the overall performance can potentially benefit
from parallel/concurrent execution and a reduction of cache
pollution. However, offloading these fine granularity func-
tions is still a challenge for current computer systems, con-
sidering the overhead of inter-core communications and the
tight coupling between data andmetadata. We detail the chal-
lenges and propose remedies that can make NextGen-Malloc
a beneficial reality.

3.1.1 Challenges. While it is not uncommon to see CPU
resource underutilization in datacenters (for example, 60%
of the Virtual Machines on Microsoft Azure have an average
CPU utilization lower than 20% [6, 33]), and while offloading
system functions to free cores to boost overall performance
has been tried for other problems (e.g., Shenango [24] dedi-
cates a single busy-spinning core permachine to a centralized
software entity), there are unique challenges to offloading
memory allocators. The majority of memory allocation func-
tion calls are fine-grained and can be finished within 100
cycles [17]. Thus memory allocation amounts to 0.05 𝜇𝑠 on
a 2GHz machine, while in Shenango [24] the granularity is
5 𝜇𝑠 (the busy-spinning core reschedules jobs among cores
every 5 𝜇𝑠 , and the duration of each job is usually longer
than 5 𝜇𝑠). In comparison to allocation time-scales, the over-
head of inter-core communication is non-negligible. A single
Atomic Read-Modify-Write (RMW) instruction needed for
inter-core synchronization can take 67 cycles on average
on a Sandy Bridge machine [26], and almost 700 cycles in
the worst case [3]. MMT [31] explored offloading memory
allocation tasks to a memory management thread in a 2-core
system. The performance did not improve without aggres-
sive preallocations, which makes it only work for workloads
with known allocation patterns.

Expectation: Whether the overall performance can ben-
efit from offloading memory allocators to a dedicated core is
still an open question. It depends on whether the inter-core
synchronization overhead can be reduced to acceptable levels.

3.1.2 Strategy 1 – Decoupling. Decoupling the metadata
memory space from user data is one of the solutions that
may lead to the overall performance gains from offloading
the memory allocator. Although MMT [31] offloads the mem-
ory allocator to a separate thread, the cache pollution issue
cannot be alleviated unless all metadata is accessed exclu-
sively by the dedicated core for memorymanagement. Before
discussing allocator decoupling, we will discuss Metadata
Layout first. Figure 2 shows two representative metadata lay-
outs, Aggregated Layout (used by Mimalloc) and Segregated
Layout (used by TCMalloc).
In Aggregated Layout, the first 8 bytes (assuming 64-bit

word size) of each free block are used as the pointer to the
next free block. Global Head and Tail pointers are used for
each page (each page has a different number of blocks, de-
pending on the block size (the block size is not necessarily
a power of 2 [13, 18]). If a block is accessed directly after
the 𝑚𝑎𝑙𝑙𝑜𝑐 () call, since 56 bytes (assuming 64-byte cache
line size) of the allocated data will already be cached by the
𝑚𝑎𝑙𝑙𝑜𝑐 () function, better spatial localities will result for the
user program. In addition, the memory block can easily be
located in the 𝑓 𝑟𝑒𝑒 () phase, since each block can be indexed
by the address directly.
However, optimizing locality for aggregated layout calls

for (1) the allocator and user program must be executed
on the same physical core, (2) the allocated memory must
be accessed immediately after it is allocated, (3) the cached
memory block must not be evicted before it is deallocated.

In Segregated Layout, metadata is decoupled from the allo-
cated storage, which may address the cache pollution issue.
Instead of an 8-byte pointer, a smaller index (16-bit for ex-
ample) can be used to indicate the location of the free page,
reducing memory fragmentation as well. Segregated lay-
out requires more complicated control logic for locating the
pointer to the freed data during the 𝑓 𝑟𝑒𝑒 () phase. Cache pol-
lution can still exist since CPUs have to access data needed
for malloc functions and other computational functions as
well.

Expectation: Trade-offs always exist between the aggre-
gated and segregated layouts and there is no global optimal
layout. However, segregated layout is more suitable for offload-
ing memory allocators in NextGen-Malloc. With segregated
layout, the address space of metadata and user data can be
separated. The additional cost in 𝑓 𝑟𝑒𝑒 () would not be an issue,
since the entire 𝑓 𝑟𝑒𝑒 () phase is not on the critical path and can
be executed asynchronously in the dedicated core.

3.1.3 Strategy 2: Removing unnecessary atomic operations
in UMAs. In current UMA designs, if one thread tries to
free a memory block that was allocated by another running
thread, contention will result (as described in Section 2.3)
and atomic operations are required to sequentialize changes

NextGen-Malloc: Giving Memory Allocator Its Own Room in the House HOTOS ’23, June 22–24, 2023, Providence, RI, USA

64 64 64 64 64 64

128 128 128

64 64

128
free

256 256

2222

2
free

free

22222222

2
offset

offset

offset

Frag

Frag

head

64 64 64 64 64 64

128 128 128

64 64

128

head Tail

Tail

256 256
Tail

8 8 8 8 8 8 8 8

8 8 8 8

8 8
head

Ag
gr

eg
ed

 L
ay

ou
t

Se
gr

eg
at

ed
 L

ay
ou

t

Figure 2: Metadata (pointers to blocks) shown in blue is de-
coupled from the allocated data in segregated layout whereas
interspersed with data in aggregated layout. Data blocks are
64, 128, or 256 bytes.

made to critical resources to avoid race conditions. When
offloading the memory allocator to a dedicated core, all mem-
ory management operations will be handled by one specific
core, metadata contention should be eliminated theoretically
(from a hardware perspective). Therefore, we can remove
redundant atomic operations in UMAs, since sequential exe-
cution can be guaranteed if all allocation codes are running
in one specific core.
Questions: Whether the contention is reduced or not is

still an open question, depending on the trade-off between the
introduced synchronization overhead in NextGen-Malloc and
removed atomic operations in current UMAs.

3.2 Type of Core to Offload to
One possibility is to offload allocation to an idle core in the

system. An alternative solution is to use a near-memory core.
Harvesting an idle core may be more cost-effective, while a
near-memory core could be energy-efficient and/or offer op-
portunities for customization. A general-purpose core makes
it compatible with other system instruction sets and ease of
compiling UMAs. A single-threaded in-order integer CPU
may be adequate for a near-memory design, since memory
address computations do not need floating point operations
or complex control logic. The near-memory core will likely
have lower memory access latencies; thus requiring only
a small (micro) cache for buffering metadata. It is crucial
to explore these design choices as they have the potential
to improve performance while reducing energy/power con-
sumption of memory management functions.

3.3 What else can NextGen-Malloc offer?
In addition to UMAs, NextGen-Malloc can also be applied

to other memory management scenarios. There are sev-
eral opportunities that can be explored extending NextGen-
Malloc.

3.3.1 Optimizing GPUMalloc. In addition to CPU-onlymem-
ory allocation systems, memory management functions on
CPU-GPUheterogeneous systems can be included inNextGen-
Malloc aswell.WhenGPUmemory spaces are included, more
trade-offs will be there. For example, in Nvidia GPUs, UVM
(Unified Virtual Memory) [1, 36] is used to make the address
space shared across the CPU hosts and GPU devices. Redun-
dant memory transmission, data allocation granularity, and
address space mapping are open questions. Asynchronous
allocation can be used, which can also be part of the asyn-
chronous CUDA memory copy. Both CPU and GPU memory
allocators can be decoupled from user programs for faster
address translation. All these features can be explored in
NextGen-Malloc.

3.3.2 Other Functions to Offload. In addition to user-level
memory allocations, NextGen-Malloc can be used for other
memory management functions. This flexibility comes from
the programmable feature of NextGen-Malloc. In the kernel
space, NextGen-Malloc can be combined with other resource
management mechanisms, e.g., Caladan [10], to balance CPU
and memory usage of different tasks. More intelligence can
be programmed to observe allocation requests and utilize
such information to predictively preallocate memory to re-
duce allocation latencies.

Also, there are opportunities in memory management for
other scenarios, including managed languages (e.g., Java and
.NET) and serverless functions (e.g., AWS Lambda [2] and
Azure Functions [21]). With GC (Garbage Collector) invoked,
LLC miss rate is reduced in .NET [8]. With different GC set-
tings, the performance of the program can be affected a lot.
Research opportunities for using NextGen-Malloc to process
garbage collection will be worth exploring. Booting a func-
tion in FaaS (Functions-as-a-Service) systems through cold
start can introduce extensive overhead, including additional
memory consumption and allocation time [5, 28, 30, 32].
To avoid duplicate runtime library initialization in differ-
ent containers, NextGen-Malloc can be extended to monitor
inter-process memory heap similarities in FaaS systems as
well.

4 NEXTGEN-MALLOC IS FEASIBLE
As outlined in previous sections, NextGen-Malloc can sup-

port asynchronous execution and reduce LLC and TLBmisses
by separating the memory space of memory management

HOTOS ’23, June 22–24, 2023, Providence, RI, USA Li et al.

function metadata between user data, but at the cost of addi-
tional inter-core communication. In this section, we model
this trade-off analytically and validate it by prototyping
NextGen-Malloc for execution on real machines and com-
paring it with state-of-the-art memory allocators.

4.1 NextGen-Malloc Performance Estimates
We use xalancbmk as an example in an analytical model

to demonstrate the potential performance improvement if
NextGen-Malloc is used. In xalancbmk,𝑚𝑎𝑙𝑙𝑜𝑐 () and 𝑓 𝑟𝑒𝑒 ()
functions are called 279, 759, 405 times in total (138, 401, 260
𝑚𝑎𝑙𝑙𝑜𝑐 () and 141, 394, 145 𝑓 𝑟𝑒𝑒 ()). The performance over-
head for these functions comes from atomic operations needed
at the beginning and end of each malloc and free function
calls. Assuming a 67-cycle latency for one atomic opera-
tion [3], there will be around 75 billion additional cycles
introduced by NextGen-Malloc. We assume that any per-
formance benefit of NextGen-Malloc is from reduced LLC
and TLB misses. Comparing Mimalloc to Glibc, we can cal-
culate that the average LLC and TLB miss penalty is 214
cycles. To amortize the overhead, NextGen-Malloc has to
achieve a reduction of at least 1.25 Cache/TLB misses in each
𝑚𝑎𝑙𝑙𝑜𝑐 ()/𝑓 𝑟𝑒𝑒 () and the subsequent user program before the
next𝑚𝑎𝑙𝑙𝑜𝑐 ()/𝑓 𝑟𝑒𝑒 () comes. This is possible to achieve in
NextGen-Malloc, since there are 7 load and store instructions
in each𝑚𝑎𝑙𝑙𝑜𝑐 () and 10 in each 𝑓 𝑟𝑒𝑒 () (for Mimalloc).

4.2 Validating NextGen-Malloc
We prototype NextGen-Malloc on an AWS-A1 bare metal

machine, with 16Armv8-A Cortex-A72 (ARM uses a weaker
memory model, which reduces the inter-core synchroniza-
tion overhead.) cores and 32GiB memory, by overwriting
functions defined in standard C libraries, e.g.,𝑚𝑎𝑙𝑙𝑜𝑐 () and
𝑓 𝑟𝑒𝑒 (), and compile it as a shared library. In NextGen-Malloc,
we spawn a child thread from the main thread when the pro-
cess is forked, pin it to a specific core, and let the spawned-
thread check signals from the main thread for incoming
𝑚𝑎𝑙𝑙𝑜𝑐 () and 𝑓 𝑟𝑒𝑒 () requests. We use the𝑚𝑎𝑙𝑙𝑜𝑐 () function
as an example (shown in Code 1) to demonstrate the syn-
chronization system in NextGen-Malloc, which is developed
for the communication between the spawned child thread
and main threads.

Two atomic variables𝑚𝑎𝑙𝑙𝑜𝑐_𝑟𝑒𝑎𝑑𝑦 and𝑚𝑎𝑙𝑙𝑜𝑐_𝑑𝑜𝑛𝑒 are
used at the beginning and end of 𝑛𝑒𝑥𝑡𝑔𝑒𝑛_𝑚𝑎𝑙𝑙𝑜𝑐 () and
𝑚𝑎𝑙𝑙𝑜𝑐 (), which are executed by the child thread and main
thread, respectively. The 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑_𝑠𝑖𝑧𝑒 and𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑_𝑏𝑙𝑜𝑐𝑘
are the input and output of𝑚𝑎𝑙𝑙𝑜𝑐 () functions, and this in-
formation is transferred between two threads. In this way,
all other𝑚𝑎𝑙𝑙𝑜𝑐 () related metadata will be stored exclusively
on the dedicated core, alleviating cache pollution that exists
in state-of-the-art memory allocators.

void nextgen_malloc() { // executed in the child thread
while (true)

if (malloc_ready) {
size_t size = atomic_load(requested_size);
void *block = normal_malloc(size);
atomic_store(allocated_block, block);
atomic_store(malloc_done, 1);
atomic_store(malloc_ready, 0);

}
}
void* malloc(size_t size) { // executed in main threads

while(atomic_load(malloc_ready));
atomic_store(requested_size, size);
atomic_store(malloc_ready, 1);
while(!atomic_load(malloc_done));
return atomic_load(allocated_block);

}

Pseudo Code 1: NextGen-Malloc Synchronization.

We still use xalancbmk as the workload. We make a side-
by-side comparison between Mimalloc and NextGen-Malloc
in Table 3. NextGen-Malloc achieves a 4.51% performance
improvement, which is also coming from a reduction of dTLB
load, LLC load, and LLC store misses.

Table 3: Execution time, dTLBMPKI (misses per kilo instruc-
tions), LLC load MPKI improve by 4.5%, 43%, and 22% respec-
tively on moving from Mimalloc to the proposed NextGen-
Malloc. AWS-A1 (ARMv8) Platform was used for this study.

Mimalloc NextGen-Malloc Improvement

Execution Time 532𝑠 508𝑠 4.51%

dTLB-load-MPKI 6.092 3.452 43.33%
LLC-load-MPKI 8.911 6.889 22.69%
LLC-store-MPKI 0.783 0.496 36.59%

5 CONCLUSION
In this paper, we draw attention to the opportunity to

achieve significant performance gains by offloading fine-
granularity service functions like memory allocation to a
separate core/device. These memory allocation functions
cause cache pollution when they are run on the same core
as the application code due to the tight coupling of their
metadata with user data. We discuss challenges in offloading
such management functions to a separate core and propose
avenues for future research.
Acknowledgement:We thank our shepherd, Aurojit Panda,
and the anonymous reviewers for their constructive feed-
back and insightful comments. This research was supported
in part by NSF grant number 1763848 and 1828105, and gifts
from Cisco and Amazon Web Services (AWS). The authors
would also like to acknowledge the computing servers do-
nated by Ampere Computing and TACC. Any opinions, find-
ings, conclusions, or recommendations are those of the au-
thors and not of the National Science Foundation or other
sponsors.

NextGen-Malloc: Giving Memory Allocator Its Own Room in the House HOTOS ’23, June 22–24, 2023, Providence, RI, USA

REFERENCES
[1] Tyler Allen and Rong Ge. 2021. In-depth analyses of unified virtual

memory system for GPU accelerated computing. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. 1–15.

[2] Amazon. 2023. AWS Lambda. https://aws.amazon.com/lambda/.
[3] Ashkan Asgharzadeh, Juan M Cebrian, Arthur Perais, Stefanos Kaxiras,

and Alberto Ros. 2022. Free atomics: hardware atomic operations
without fences.. In ISCA. 14–26.

[4] David Boreham. 2000. Malloc () performance in a multithreaded Linux
environment. In 2000 USENIX Annual Technical Conference (USENIX
ATC 00).

[5] Joao Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro Fonseca. 2021.
From warm to hot starts: Leveraging runtimes for the serverless era. In
Proceedings of the Workshop on Hot Topics in Operating Systems. 58–64.

[6] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. 2017. Resource central: Understand-
ing and predicting workloads for improved resource management in
large cloud platforms. In Proceedings of the 26th Symposium on Operat-
ing Systems Principles. 153–167.

[7] Zheng Dang, Shuibing He, Peiyi Hong, Zhenxin Li, Xuechen Zhang,
Xian-He Sun, and Gang Chen. 2022. NVAlloc: rethinking heap meta-
data management in persistent memory allocators. In Proceedings of
the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 115–127.

[8] Aniket Deshmukh, Ruihao Li, Rathijit Sen, Robert R Henry, Monica
Beckwith, and Gagan Gupta. 2021. Performance characterization of.
net benchmarks. In 2021 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 107–117.

[9] Jason Evans. 2006. A scalable concurrent malloc (3) implementation
for FreeBSD. In Proc. of the bsdcan conference, ottawa, canada.

[10] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. 2020.
Caladan: Mitigating interference at microsecond timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). 281–297.

[11] Jayneel Gandhi, Mark D Hill, and Michael M Swift. 2016. Agile paging:
Exceeding the best of nested and shadow paging. ACM SIGARCH
Computer Architecture News 44, 3 (2016), 707–718.

[12] Wolfram Gloger. 2022. “Wolfram Gloger’s malloc homepage”. http:
//www.malloc.de/en/.

[13] Google. 2023. TCMalloc. https://github.com/google/tcmalloc/.
[14] A.H. Hunter, Chris Kennelly, Paul Turner, Darryl Gove, Tipp Moseley,

and Parthasarathy Ranganathan. 2021. Beyond malloc efficiency to
fleet efficiency: a hugepage-aware memory allocator. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 21).
USENIX Association, 257–273. https://www.usenix.org/conference/
osdi21/presentation/hunter

[15] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. 2017. In-datacenter performance analysis of a
tensor processing unit. In Proceedings of the 44th annual international
symposium on computer architecture. 1–12.

[16] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Pro-
filing a warehouse-scale computer. In 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA). 158–169.
https://doi.org/10.1145/2749469.2750392

[17] Svilen Kanev, Sam Likun Xi, Gu-Yeon Wei, and David Brooks. 2017.
Mallacc: AcceleratingMemory Allocation. In Proceedings of the Twenty-
Second International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Xi’an, China) (ASPLOS ’17).

Association for Computing Machinery, New York, NY, USA, 33–45.
https://doi.org/10.1145/3037697.3037736

[18] Daan Leijen, Ben Zorn, and Leonardo de Moura. 2019. Mimalloc:
Free List Sharding in Action. Technical Report MSR-TR-2019-18.
Microsoft. https://www.microsoft.com/en-us/research/publication/
mimalloc-free-list-sharding-in-action/

[19] Martin Maas, Krste Asanović, and John Kubiatowicz. 2018. A hardware
accelerator for tracing garbage collection. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA). IEEE,
138–151.

[20] Martin Maas, Chris Kennelly, Khanh Nguyen, Darryl Gove, Kathryn S.
McKinley, and Paul Turner. 2021. Adaptive Huge-Page Subrelease
for Non-Moving Memory Allocators in Warehouse-Scale Computers.
In Proceedings of the 2021 ACM SIGPLAN International Symposium on
Memory Management (Virtual, Canada) (ISMM 2021). Association for
Computing Machinery, New York, NY, USA, 28–38. https://doi.org/
10.1145/3459898.3463905

[21] Microsoft. 2023. Azure Functions. https://azure.microsoft.com/en-
us/products/functions/.

[22] Microsoft. 2023. Mimalloc-bench. https://github.com/daanx/mimalloc-
bench/.

[23] SPEC org. 2022. SPEC CPU 2017. https://www.spec.org/cpu2017/.
[24] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and

Hari Balakrishnan. 2019. Shenango: Achieving high {CPU} efficiency
for latency-sensitive datacenter workloads. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). 361–378.

[25] Reena Panda, Shuang Song, Joseph Dean, and Lizy K John. 2018. Wait
of a decade: Did SPEC CPU 2017 broaden the performance horizon?.
In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 271–282.

[26] Bharghava Rajaram, Vijay Nagarajan, Susmit Sarkar, and Marco Elver.
2013. Fast RMWs for TSO: Semantics and implementation. In Proceed-
ings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 61–72.

[27] Jee Ho Ryoo, Nagendra Gulur, Shuang Song, and Lizy K John. 2017.
Rethinking TLB designs in virtualized environments: A very large
part-of-memory TLB. ACM SIGARCH Computer Architecture News 45,
2 (2017), 469–480.

[28] Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, and Aditya
Akella. 2022. Memory deduplication for serverless computing with
medes. In Proceedings of the Seventeenth European Conference on Com-
puter Systems. 714–729.

[29] Hermann Schweizer, Maciej Besta, and Torsten Hoefler. 2015. Evaluat-
ing the cost of atomic operations on modern architectures. In 2015 In-
ternational Conference on Parallel Architecture and Compilation (PACT).
IEEE, 445–456.

[30] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20). USENIX Association, 205–218. https://www.usenix.org/
conference/atc20/presentation/shahrad

[31] Devesh Tiwari, Sanghoon Lee, James Tuck, and Yan Solihin. 2010.
Mmt: Exploiting fine-grained parallelism in dynamic memory manage-
ment. In 2010 IEEE International Symposium on Parallel & Distributed
Processing (IPDPS). IEEE, 1–12.

[32] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,
and Boris Grot. 2021. Benchmarking, analysis, and optimization of
serverless function snapshots. In Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems. 559–572.

https://aws.amazon.com/lambda/
http://www.malloc.de/en/
http://www.malloc.de/en/
https://github.com/google/tcmalloc/
https://www.usenix.org/conference/osdi21/presentation/hunter
https://www.usenix.org/conference/osdi21/presentation/hunter
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/3037697.3037736
https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action/
https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action/
https://doi.org/10.1145/3459898.3463905
https://doi.org/10.1145/3459898.3463905
https://azure.microsoft.com/en-us/products/functions/
https://azure.microsoft.com/en-us/products/functions/
https://github.com/daanx/mimalloc-bench/
https://github.com/daanx/mimalloc-bench/
https://www.spec.org/cpu2017/
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad

HOTOS ’23, June 22–24, 2023, Providence, RI, USA Li et al.

[33] YawenWang, Kapil Arya,Marios Kogias,Manohar Vanga, Aditya Bhan-
dari, Neeraja J Yadwadkar, Siddhartha Sen, Sameh Elnikety, Christos
Kozyrakis, and Ricardo Bianchini. 2021. SmartHarvest: harvesting idle
CPUs safely and efficiently in the cloud. In Proceedings of the Sixteenth
European Conference on Computer Systems. 1–16.

[34] Qinzhe Wu, Jonathan Beard, Ashen Ekanayake, Andreas Gerstlauer,
and Lizy K John. 2021. Virtual-Link: A Scalable Multi-Producer Multi-
Consumer Message Queue Architecture for Cross-Core Communi-
cation. In 2021 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 182–191.

[35] Wm A Wulf and Sally A McKee. 1995. Hitting the memory wall:
Implications of the obvious. ACM SIGARCH computer architecture
news 23, 1 (1995), 20–24.

[36] Weixi Zhu, Guilherme Cox, Jan Vesely, Mark Hairgrove, Alan L Cox,
and Scott Rixner. 2022. UVM Discard: Eliminating Redundant Memory
Transfers for Accelerators. In 2022 IEEE International Symposium on
Workload Characterization (IISWC). IEEE, 27–38.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Memory Allocators
	2.2 Malloc impacts more than you think!
	2.3 Existing Allocators are Limiting

	3 Opportunities
	3.1 Offload Malloc to its Own Core
	3.2 Type of Core to Offload to
	3.3 What else can NextGen-Malloc offer?

	4 NextGen-Malloc is Feasible
	4.1 NextGen-Malloc Performance Estimates
	4.2 Validating NextGen-Malloc

	5 Conclusion
	References

