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Old is Gold: Optimizing Single-threaded
Applications with ExGen-Malloc

Ruihao Li, Student Member, IEEE, Lizy K. John, Fellow, IEEE, and Neeraja J. Yadwadkar

Abstract—Memory allocators, though constituting a small
portion of the entire program code, can significantly impact
application performance by affecting global factors such as
cache behaviors. Moreover, memory allocators are often regarded
as a “datacenter tax” inherent to all programs. Even a 1%
improvement in performance can lead to significant cost and
energy savings when scaled across an entire datacenter fleet.
Modern memory allocators are designed to optimize allocation
speed and memory fragmentation in multi-threaded environ-
ments, relying on complex metadata and control logic to achieve
high performance. However, the overhead introduced by this
complexity prompts a reevaluation of allocator design. Notably,
such overhead can be avoided in single-threaded scenarios,
which continue to be widely used across diverse application
domains. In this paper, we present ExGen-Malloc, a memory
allocator specifically optimized for single-threaded applications.
We prototyped ExGen-Malloc on a real system and demonstrated
that it achieves a geometric mean speedup of 1.19× over dlmalloc
and 1.03× over mimalloc, a modern multi-threaded allocator
developed by Microsoft, on the SPEC CPU2017 benchmark suite.

Index Terms—Memory Allocator, Multi-Threading.

I. INTRODUCTION

W ITH the increasing prevalence of multi-threaded appli-
cations that exploit parallelism for performance gains,

modern memory allocators are typically architected to support
concurrent allocation and deallocation requests across multiple
threads, minimizing contention and maximizing scalability.
To meet the demands of multi-threaded applications, memory
allocators have themselves shifted from single-threaded to
multi-threaded library designs. Fig. 1 shows the evolution of
memory allocators over time. During the mid-1990s, single-
threaded memory allocators, such as the Win32 allocator and
dlmalloc [1], [2], [3] (also referred to as Windows XP memory
allocator and Lea allocator), were predominant, reflecting
the widespread use of single-core processors. By the late
1990s and early 2000s, with the rise of multi-core processors,
LKMalloc [4] became the first multi-threaded memory allo-
cator. Advancements introduced techniques like tiered meta-
data and better metadata management with improved control
flow, culminating in the development of allocators such as
Hoard [5], tcmalloc [6] from Google, jemalloc [7] from Meta,
and mimalloc [8] from Microsoft.

These modern memory allocators, are complex pieces of
code that need to excel at many tasks, including (a) performing
fast allocation and deallocation of objects, (b) handling objects
of various sizes efficiently with minimal fragmentation, (c)
returning freed space quickly so that further allocations can
be made, (d) being scalable to many threads and cores, and
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Fig. 1. Timeline of memory allocators (for C/C++). Since LKMalloc, efforts
have primarily focused on multi-threaded allocators, leaving single-threaded
allocators largely overlooked.

so on. To achieve these tasks, modern memory allocators rely
on complex metadata [5], [7], [8], [9], [10].

Since most developments focused mainly on multi-threaded
applications, modern allocators have silently ignored single-
threaded applications. However, single-threaded applications
remain widely popular across various domains today. For
example, serverless workloads are often single-threaded [11],
most data compression algorithms operate in a single-threaded
manner [12], and Redis, one of the most popular in-memory
databases, is also single-threaded [13]. The complexities of
modern multi-threaded memory allocators are shown to lead
to performance degradation for applications, mainly due to
the cache pollution [14] induced by allocator metadata evict-
ing cache lines containing user program data. In contrast,
single-threaded applications generally impose less demand-
ing requirements on memory allocators compared to their
multi-threaded counterparts. However, the widespread use of
allocators optimized for multi-threaded workloads—even in
single-threaded contexts—introduces unnecessary overheads
such as synchronization primitives (e.g., locks) and additional
metadata management. These overheads, while essential for
thread safety in multi-threaded environments, become super-
fluous in single-threaded settings and can lead to measurable
performance degradation.

We argue that if a program is statically known to be single-
threaded, a specialized memory allocator optimized for single-
threaded execution can be safely selected at link time. This
approach is practical, as determining the threading model
of a program—whether single-threaded or multi-threaded—is
feasible during compile-time or link-time analysis [15] (details
in § III). We revisit legacy single-threaded memory allocators,
such as dlmalloc [2], which inherently avoid synchronization
and metadata management overheads. However, to remain
effective in modern systems, ExGen-Malloc must also accom-
modate increasingly complex allocation patterns, data locality
behaviors, and object size distributions [16]. To this end,
we propose ExGen-Malloc, a hybrid allocator that maintains
a single-threaded design while incorporating key principles
from modern multi-threaded allocators. Specifically, ExGen-
Malloc adopts techniques such as aggregated metadata for
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efficient indexing and rapid reuse of freed memory blocks,
as exemplified by mimalloc [8]. We implement a prototype of
ExGen-Malloc on a real system and evaluate its practicality
using the SPEC CPU2017 benchmark suite. ExGen-Malloc
achieves a 1.19× geometric mean speedup over dlmalloc and
a 1.03× speedup over mimalloc, a modern multi-threaded
allocator developed by Microsoft.

II. A CASE FOR ExGen-Malloc

We first provide an overview of memory allocators (§ II-A)
and discuss the evolution from single-threaded to multi-
threaded designs (§ II-B). We then highlight the limitations
of universally applying multi-threaded allocators to all ap-
plications (§ II-C) and motivate the need for single-threaded
allocators tailored to single-threaded programs (§ II-D).

A. Background: Memory Allocators

Memory allocators manage heap memory for a process
using functions like malloc() and free(), often through libraries
such as mimalloc or tcmalloc (in C/C++). To track heap
usage, allocators maintain internal book-keeping structures,
called allocator metadata. For example, allocators use linked
lists to record available memory blocks of various sizes.
Coarser size blocks enable faster indexing during allocation
but lead to higher memory fragmentation, whereas fine-grained
size blocks reduce fragmentation at the cost of increased
metadata complexity and latency of allocation. Achieving a
balance between allocation speed and memory fragmentation
in memory allocators remains a challenging problem that
continues to attract research interest from both software and
hardware communities [5], [8], [10], [17], [11], [16], [18].

B. Transition from Single- to Multi-threaded Allocators

Modern multi-threaded applications issue memory alloca-
tions concurrently, prompting a shift from single-threaded
allocators like dlmalloc [2] to multi-threaded designs such as
LKMalloc [4], Hoard [5], and many others developed in both
industry and academia [3], [7], [19], [8], [10], [9], [20], [21].
These multi-threaded allocators are more complex and must
balance allocation speed with memory fragmentation.

To support concurrent allocation, multi-threaded allocators
typically adopt either (a) per-thread private memory pools
or (b) a centralized shared memory region. Per-thread pools
reduce contention but can cause memory blowup—a linear
increase in memory usage with thread count [5]. In con-
trast, centralized pools conserve memory but incur cross-
core synchronization overhead due to lock contention. Modern
allocators address this trade-off with a hybrid design: thread-
local caches handle fast, small allocations, while a global
memory pool balances memory across threads. As illustrated
in Fig. 2 (left), each malloc() request first consults the thread-
local cache and falls back to the shared pool when needed.
Periodic synchronization ensures balanced distribution of free
memory among threads.

Modern memory allocators efficiently support concurrent
allocation and deallocation, but their tiered metadata designs
introduce two key overheads:

• Cache pollution: accessing allocator metadata can evict
useful user data from CPU caches [14]. In multi-threaded
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Fig. 2. Multi-threaded Allocator vs Single-threaded Allocator. The single-
threaded allocator uses single-layer metadata and simplifies the control logic.
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Fig. 3. Scalability of different memory allocators for xalancbmk. As the
number of copies increases, the IPC decreases due to higher overhead caused
by an increase in L1-dcache misses.

workloads, this effect is amplified, as metadata accesses
may interfere with cache lines used by other cores,
causing false sharing [5] (independent variables modified
by different threads reside in the same cache line).

• Synchronization: allocators use synchronization primi-
tives (e.g., locks) to maintain metadata consistency, but
the resulting communication overhead grows with core
count, degrading system performance [22].

C. Multi-threaded Allocators in Single-threaded Programs

When multi-threaded memory allocators are used for single-
threaded programs, they impose unnecessary performance
overhead. The potential overhead includes:

• Additional tiered metadata data structure. As the blowup
issue does not exist in single-threaded programs, a sin-
gle metadata layer is sufficient to manage the available
memory blocks.

• Additional synchronization and control logic. As single-
tiered metadata is enough for single-threaded programs,
allocators do not need complex control logic, e.g., map-
ping each allocation request to each thread-local cache.

Fig. 3 gives an example of the scalability of using multi-
threaded allocators for single-threaded application xalancbmk
(a representative workload from SPEC CPU2017 [23]). Each
copy is isolated and runs on its own core, where private L1-
dcache misses would typically remain stable. However, these
misses still increase when using multi-threaded allocators,
which is the result of metadata shared between cores.

D. A Case for Single-Threaded Allocators
The performance overhead of multi-threaded allocators sug-

gests they may not be suitable for all applications. Notably,
after LKMalloc [4] and Hoard in the early 2000s [5], research
has predominantly focused on multi-threaded scenarios [3],
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1. gcc -c -O3 main.c
2. gcc -O3 main.o -o main -lmimalloc
3. ./main

1. gcc -c -O3 main.c
2. objdump -d main.o > main.s
3. if pthread in main.s
4.     gcc -O3 main.o -o main -lmimalloc
5. else
6.     gcc -O3 main.o -o main -lexgen_malloc
7. ./main

Existing Flow of Using Mimalloc

Integrating ExGen-Malloc into Existing Flow

Fig. 4. Compilation flow with/without ExGen-Malloc.

[7], [19], [24], [6], [8], [9], [10], [16]. However, single-
threaded applications remain popular as they are often sim-
pler to develop, test, and debug, making them an attractive
choice for developers who prioritize simplicity and reliability.
Moreover, the overhead associated with thread management
in multi-threaded applications can sometimes negate the per-
formance benefits for certain types of workloads. Many im-
portant workloads remain single-threaded, including serverless
functions [11], data compression algorithms [12], and in-
memory databases such as Redis [13]. In energy-constrained
edge environments, single-threaded applications are favored
for their simplicity and energy efficiency [25]. Additionally,
single-threaded designs offer cost benefits [26], [27], making
them a practical choice in cloud computing platforms [28].
These trends motivate the exploration of memory allocators
tailored to single-threaded applications.

III. OUR PROPOSAL: ExGen-Malloc
In this paper, we argue that it is time to resurrect single-

threaded memory allocators, especially given that single-
threaded applications continue to be popular in the cloud
and the datacenters [11], [12], [13], [29], [30]. However, we
cannot rely solely on traditional single-threaded allocators
such as dlmalloc [2], as contemporary single-threaded appli-
cations depict increasingly complex data locality, allocation
patterns, and object size distributions characteristic of modern
software [16]. To meet these demands, we envision ExGen-
Malloc that incorporates modern design principles inspired by
multi-threaded allocators, including (but not limited to):

• Using aggregated metadata for efficient indexing and
rapid reuse of freed memory blocks.

• Using bitmaps or other data structures to optimize com-
mon allocation and free paths, enabling constant-time
(O(1)) execution.

• Deferring merging of adjacent free blocks to avoid run-
time overhead.

• Using fine-grained size classes to reduce internal frag-
mentation, especially for small object allocations.

• Leveraging inline functions to reduce the overhead of
allocation function calls.

By eliminating unnecessary metadata and simplifying control
logic, while retaining key techniques from modern multi-
threaded allocators, ExGen-Malloc can achieve high efficiency
in single-threaded applications.

To ensure ExGen-Malloc is a practical solution, it must
integrate seamlessly with existing compilation workflows. This
requires an understanding of how current systems incorporate
custom memory allocators (e.g., mimalloc), typically by link-
ing the allocator library and overriding the default memory
allocation functions. For example, mimalloc can be integrated

either by linking its static library or by preloading its shared
library as a drop-in replacement. As illustrated in Fig. 4 (left),
a common approach on POSIX-based systems using GCC is to
preload mimalloc in place of the default Glibc allocator. This
workflow serves as a foundation for integrating ExGen-Malloc
into the compilation process.

Integrating ExGen-Malloc into existing compilation work-
flows requires an additional step to determine whether a
program is single- or multi-threaded. One way is to introduce
an extra compilation pass. As shown in Fig. 4 (right), on a
POSIX-based system using GCC, the object file main.o is dis-
assembled after compilation to detect references to threading
function calls, such as pthread create() in C, before linking a
memory allocator. This detection can be automated using shell
scripts (or scripts in other languages) and incorporated into
the build system (e.g., Makefile). Importantly, developers
can continue using standard memory allocation functions (e.g.,
malloc()/free()) without modifying their applications.

IV. PROTOTYPING ExGen-Malloc
To validate that using single-threaded memory allocators for

single-threaded programs can lead to performance improve-
ments, we prototyped ExGen-Malloc on a real system (AMD
EPYC 7763 with 64 cores and 8× 16GB 3200 MT/s DDR4,
running Linux 5.4). We developed ExGen-Malloc by building
atop mimalloc, removing multi-thread-related metadata and
control logic to better cater to the needs of single-threaded
applications. We compared ExGen-Malloc against the single-
threaded allocator dlmalloc [2] and three state-of-the-art multi-
threaded allocators—jemalloc [7], tcmalloc [6], and mimal-
loc [8]—using SPEC CPU2017 intrate workloads (running 64
copies, compiled with gcc-13.2.0 -O3).

As shown in Fig. 5, although jemalloc [7]1, tcmalloc [8],
and mimalloc [8] are multi-threaded, they outperform the
single-threaded dlmalloc [2] due to applying advanced design
principles in modern allocators (§ III). By adopting modern
allocator design principles while maintaining a single-threaded
architecture, ExGen-Malloc consistently outperforms existing
allocators, achieving a geometric mean speedup of 1.19× over
dlmalloc 1.03× over mimalloc on SPEC CPU2017.

For allocation-intensive workloads with diverse object sizes
such as xalancbmk [31], [14], ExGen-Malloc delivers substan-
tial performance improvements over modern industry alloca-
tors (1.13× and 1.19× speedups over jemalloc and mimalloc).
However, ExGen-Malloc is not universally effective across all
workloads, as most SPEC CPU benchmarks exhibit minimal
dynamic memory activity during steady-state execution [16]2.
To further understand the source of the performance gains
by using ExGen-Malloc, we profiled the cache behavior of
xalancbmk under different memory allocators. As shown in
Table I, ExGen-Malloc reduces L1-dcache MPKI by 1.25%

1We compile jemalloc using the lazy lock flag, enabling it to operate in
single-threaded mode without incurring mutex locking overhead. While this
reduces synchronization costs, the underlying metadata structures remain as
complex as in the multi-threaded configuration.

2ExGen-Malloc is designed to target real-world applications with more
complex and sustained allocation patterns, rather than benchmark suites such
as SPEC CPU workloads. On average, datacenter applications yield 15× more
time spent on memory allocation than SPEC CPU [16], [18].
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TABLE I
ExGen-Malloc REDUCES L1 AND L2 CACHE MPKI COMPARED TO OTHER

ALLOCATORS ON XALANCBMK.

Metrics dlmalloc jemalloc tcmalloc mimalloc ExGen-Malloc

L1-dcache MPKI 39.36 34.80 36.15 36.18 34.36
L2-cache MPKI 6.15 2.43 2.45 2.73 1.72

and 5.03%, and L2-cache MPKI (data misses) by 29.10% and
36.93%, compared to jemalloc and mimalloc, respectively.

V. FUTURE OF ExGen-Malloc
Beyond optimizing memory allocation with ExGen-Malloc,

it is valuable to reassess the overhead introduced by other
multi-threaded system libraries, particularly those used in
common for microservices, which are often considered part
of the “datacenter tax” [32], [33], [34], [16]. Even a minimal
percentage of improvement in these libraries can translate to
substantial power and energy savings, potentially amounting
to megawatts at datacenter scale. Following the direction of
ExGen-Malloc, we believe ExGen-Xs (X represents system
libraries beyond memory allocators) are also on their way.
Challenges: Our comparison of dlmalloc, ExGen-Malloc, and
other modern allocators (Fig. 5) demonstrates that reverting
to older single-threaded libraries does not inherently yield
performance improvements without targeted optimizations.
This highlights the need for root cause analysis of each library
to effectively isolate the performance impact of transitioning
from a multi-threaded to a single-threaded version.

VI. CONCLUSION

Modern memory allocators are designed to support multi-
threaded applications. To do so, these memory allocators often
rely on complex metadata structures and control logic. While
this complexity enables them to handle diverse and dynamic
allocation patterns in modern applications, it also introduces
non-trivial overhead. In contrast, such overhead can be avoided
in single-threaded contexts, which remain prevalent across a
broad range of applications. To address this gap, we propose
ExGen-Malloc, a hybrid allocator that retains a single-threaded
design while incorporating key principles from modern multi-
threaded allocators. Prototypes on a real system show that
ExGen-Malloc achieves a geometric mean speedup of 1.19×
over dlmalloc and 1.03× over mimalloc, a modern multi-
threaded memory allocator, on the SPEC CPU2017 benchmark
suite. We conclude with an outline of the next research avenues
using ExGen-Malloc: its design principles can be extended
to other system libraries, such as network packet processing
libraries, offering both opportunities and challenges.

REFERENCES

[1] J. M. Richter, Advanced Windows: the developer’s guide to the Win32
API for Windows NT 3.5 and Windows 95. Microsoft Press, 1995.

[2] D. Lea et al., “A memory allocator,” 1996.
[3] E. D. Berger et al., “Reconsidering custom memory allocation,” in

OOPSLA, 2002.
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